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Abstract

Natural Language Inference (NLI) is a sub-task of NLP with the goal
of determining entailment relations between two texts. A premise p en-
tails a hypothesis h if the meaning of h can reasonably be inferred given
p. NLI finds an application in the field of digital learning, where it can be
used to automatically evaluate free-form student responses to open-ended
questions, a task which has largely been infeasible until the advent of deep
language models. Using NLI, an entailment relationship is determined be-
tween the student’s response and a set of correct and incorrect reference
answers. Immediate, personalized feedback can therefore be given by asso-
ciating a piece of feedback to each entailed reference answer and returning
the most relevant feedbacks to the student after response submission.

NLI models are intended to identify a semantic relationship between
two texts, but can be fooled by adversarial examples containing confound-
ing knowledge, incorrect word associations, and more. While NLI models
were found to work well in a digital learning setting with some modifica-
tion and under non-adversarial circumstances, they are not a panacea for
answer verification and feedback assignment, and work best when aug-
mented with other techniques such as classical NLP methods or premise

engineering.
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1 Introduction

Dear reader, do you recall your life as a schoolchild or student? Surely you must
remember the experience of handing in an assignment, then anxiously waiting
days for your grade. Or getting a big, red on a test because you didn’t
understand something but then receiving no feedback on what you did wrong?

Education is one of the best investments one can make in their life, and yet
our teachers and teaching assistants are constantly overworked and spend too
much time correcting assignments [26, 44, 83]. Giving each individual student
the feedback they deserve is a time-consuming affair that is seldom realized.
Many times, we learn from trial and error, and from failure, but if we fail and
don’t know why, frustration overshadows the joy of learning.

Today, computers are as abundant as books, and a lot of learning has
moved from the traditional pen-and-paper to the modern world of tablets, e-
books, videos, PowerPoints, and online courses. The early 2010s saw the rise
of massive open online courses (MOOCs), such as Coursera or Udacity, that
serve a huge number of students over the Internet. More recently, the COVID-
19 pandemic highlighted the need and value of digital learning resources as
students worked from home. Digital learning is becoming more commonplace.

Digital learning platforms are not yet fully autonomous. Human correctors
who evaluate students’ learning progress are still needed. While the correction
of “closed-ended” questions, such as multiple choice, fill-in-the-blank, or math-
ematics, is easily automated, the task of correcting free-form, “open-ended”
responses in real time is much more difficult. An even greater challenge is pars-
ing such a free-form response and, based on mistakes that the student made,
assigning personalized feedback that addresses the mistakes and gives hints on
how to succeed.

The purpose of this project is to evaluate an AI method of matching
open-ended responses with personalized feedback items so that
students can get tailored, immediate feedback on open-ended
questions that require higher-order thinking.

Receiving tailored feedback to open-ended questions undoubtedly improves
the learning experience and creates a more interactive and engaging learning
environment [13, 125, 137].



1.1 This work

This thesis details an exploratory research project at Taskbase AG, a educa-
tional technology (EdTech) company. The goal of the project is to study the
feasibility and value of employing artificial intelligence, specifically machine
learning (ML) and natural language inference (NLI) techniques, to feedback
assignment in digital learning. It will explore NLI’s benefits and drawbacks in
digital learning, how to adapt digital learning methods to take better advantage
of the power of NLI, and how NLI can be built upon to specialize it for the field
of digital learning.

1.2 Outline

You are now reading Section 1. Welcome! Section 2 presents the basics of
digital learning platforms and introduces NLI as a language processing task.
Section 3 describes prior work in technology and feedback in the (digital) class-
room, recalls the history of NLI from its inception to the state-of-the-art, and
presents past methods of using NLI in digital learning. Section 4 introduces
the goals, expected contributions, and research questions of this work. Section
5 outlines the data collection, model selection, and data-gathering processes.
It also presents an empirical evaluation into how NLI models work (and how
they fail) on various open and education-specific corpora, through a series of
experiments that explore the sensibilities and failure cases of several different
NLI models. Section 6 brings together all the findings to suggest a framework
on how to employ NLI models in digital learning platforms to maximize the
usefulness of feedback given to students. Section 7 lists many additional topics
and questions that were raised by this work.

In the appendices, the reader shall find a list of tables and figures of raw
data for each quantitative experiment, datasets developed for this project, and

a glossary of common terms.



2 Foundations

If you wish to make an apple pie from scratch, you
must first invent the universe.

Carl Sagan, Cosmos

This work does not attempt to invent the universe. However, it will be useful
to introduce some basic concepts that the reader should know about digital
learning platforms and the task of Natural Language Inference (NLI).

2.1 A model for tasks and tailored feedback

For the purposes of this work, a digital learning platform is a tool in educa-
tion where instructors can create and assign exercises, assignments, quizzes, or
tests; and where students can complete these on-line . Digital learning platforms
also have a component that automatically evaluates responses to many kinds of
questions, lifting some of the burden off the shoulders of correctors. In contrast
to traditional pen-and-paper approaches, students can complete exercises and
correctors can grade them anytime, anywhere. The Moodle software at EPFL
satisfies this definition of a digital learning platform.

Within an assignment, quiz, exercise, or test on a digital learning platform,
there is a list of tasks, or questions to respond to. Students respond to one
task at a time. When a response is submitted, the digital learning platform may
save the response and move on to the next task, or offer immediate formative
feedback, motivational and/or corrective, using some automated mechanism.
How immediate feedback is generated depends on whether the task is open-
ended or closed-ended.

2.1.1 Tasks are open-ended or closed-ended

Tasks can be open-ended or closed-ended. In the context of this work, a
closed-ended task is one with a clear expected response that can be checked for
correctness with a rubric or key. Closed-ended tasks are typically answerable by
multiple-choice or fill-in-the-blank, and correction is easily automatable. Many
tasks in mathematics are also closed-ended tasks, since programs exist that can
parse a math expression and precisely evaluate its structure and result.
Open-ended tasks are much more interesting because they require the stu-
dent to formulate an answer in their own words. The response takes the form
of natural language, usually in the form of one or several sentences. There is no
definite answer key — because there are so many ways to formulate an answer
to an open-ended question, responses from one student to another will vary.



Open-ended tasks

Explain what intention could be associated with Barack Obama’s “hope” and
“change” campaign slogans in 2008.

Explain what a successful company should offer to its customers.
What does the wolf do by inviting Little Red Riding Hood into the house?

Why must you know the molarity of a solution in order to efficiently perform a
chemical reaction?

Explain in one sentence how Mozart’s works shaped contemporary music.

Closed-ended tasks

What does the acronym “NLP” mean?
In what year was Otto von Bismark born?

Which of these countries have not adopted the Euro as their currency? Check all
that apply.

Who was the president of France in 20007
Fill in the blank: “Sur nos monts, quand le soleil annonce un réveil,”

Write the formula for calculating the roots of a parabola.

Table 1: Examples of open- and closed-ended tasks.

Ways in which a response may vary are sentence structure, word substitution
(e.g. synonyms), presence/absence of capitalization, presence/absence of punc-
tuation, inconsistent grammar, etc. There may also be several correct responses
to a task, for example:

Question: What are the effects of climate change?
Answer 1: FEarth’s weather patterns will be disrupted. (T2.1)
Answer 2: The average temperature will rise.

Open-ended tasks provide greater didactical value since they require stu-
dents to synthesize a response from scratch, instead of ruling out incorrect
options as in multiple-choice, or blindly guessing in a narrow context as in fill-
in-the-blank. Open-ended tasks challenge students’ higher-order reasoning and
critical thinking skills [7, 39, 93, 97, 86, 144].

Table 1 lists some examples of closed-ended and open-ended task prompts.

2.1.2 Students should receive feedback

Receiving feedback is a crucial component of the learning process. Based on
feedback to responses, students alter their conceptions in order to better under-



stand the material being studied — this is the principle of learning. Feedback
can take many forms: a “correct” /“incorrect” label to a response, a numeric
grade, a motivational message (e.g. “Well done!”), a (partial) correct answer
to a task, a hint on reaching the correct answer, an explanation of a student’s
misconception, and so on [125]. When feedback is given during the learning
process, as opposed to at the end, it is called formative feedback, and its
purpose is to change the way a student thinks and learns about a particular
subject [124].

Feedback has a property of timing. Feedback given after a delay is the
norm for pen-and-paper assignments and formal tests/exams. Feedback given
immediately can be achieved en masse by automating the assignment process
and evaluating student responses with a machine. Of course, in a traditional
assignment, the more assistants an instructor has, the speedier the marking.
On the other hand, some learning environments, such as many MOOCs, seldom
offer feedback due to the amount of learners, unless a learner pays for the course.

Good feedback has three important traits that are relevant in this work:

Elaborative Good feedback elaborates on the student’s response or gives hints
on how to approach the problem. Simple feedback like a “correct” / “incorrect”
label or numeric grade is not elaborative [125].

Immediate Good feedback is given right after the student submits their answer
to the task.

Specific Good feedback addresses specific elements of a student’s answer, why
those elements might be wrong, and how they can be improved [125].

This work will focus on the concept of personalized or tailored feedback.
Such feedback is elaborate and specific, and ideally personalized to a particular
student and their learning level. The ultimate goal of digital learning platforms
is to make the assignment of tailored feedback immediate for all types of tasks.

Assigning good feedback in closed-ended tasks is quite easy. Verification
is automatable in real time using a computer. Since the space of possible and
relevant answers is small, instructors can anticipate mistakes and provide elab-
orated and specific feedback ahead of time.

Assigning good feedback in open-ended tasks, however, is much more diffi-
cult. Because the student answers in natural language, there is a huge space of
possible answers, and so feedback cannot be assigned based on a simple lookup
table or even a set of rules. It would be impossible for a human instructor to
exhaustively create feedback for every possible way a student might phrase their
response, as some of this work’s examples will demonstrate. Yet, open-ended



questions have enormous didactical value over closed-ended since they challenge
students’ higher-order thinking skills 7, 39, 93, 97, 86, 144].

2.1.3 The task model

How can an immediate, tailored feedback assignment system be developed that
works for open tasks? To ponder this, it is essential to define a task model
that prescribes the elements of a task:

Prompt A prompt is a short piece of text that poses a question or instructs
the student to give an answer to something. Optionally, the prompt may
provide context of the question. For examples of open-ended and closed-
ended prompts, see Table 1.

Hypotheses Hypotheses are reference responses to the task, typically written
by the instructor or task author. These are two types of hypotheses. Cor-
rect hypotheses are reference correct responses to the task, i.e. expected
responses. Mistake hypotheses are ones that capture some mistake that
the student makes or a misconception that they have about the learning
material. Hypotheses should resemble actual student responses, whether
they be correct or incorrect.

Feedback Each hypothesis can be associated with one or more feedback items,
which are shown to the student after they submit a response. Feedback
items should address the misconception in their associated mistake hy-
potheses.

Student responses A task accumulates responses as students attempt the
task.

Feedback is assigned to students, roughly speaking, by picking which hy-
potheses are closest to a certain response (there can be more than one). If any of
the matched hypotheses are mistake hypotheses, their corresponding feedback
items are shown. Otherwise, the response is correct and the student passes the
task.

Every hypothesis should have a piece of associated feedback. In the case of
a mistake hypothesis, the feedback should address the mistake made and give
the student some instruction or background as to why the response is wrong. If
the response is correct, motivational feedback (e.g. Great job! Climate change
is actually predicted to make weather patterns more extreme across the globe.)
is also helpful to heighten student satisfaction and engagement [125].

The set of responses which match only the correct hypotheses is the correct
class of responses. The set of responses which contain the same misconception
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Task: What do giraffes eat?

RESPONSES HYPOTHESES FEEDBACK
' Response _ Hypothesis » CORRECT
Giraffes eat grasses Giraffes eat grass
Response Hypothesis Feedback
Giraffes are Giraffes are Close! Giraffes are
herbivores herbivores herbivores, that's not what
the question asked.
Response Hypothesis
Giraffes eat small Giraffes eat other
prairie animals animals . Feedback
Giraffes don't eat this. Try
Response Hypothesis Q.
Giraffes eat grass Giraffes are
and beans carnivores Eeedback
You need to explain what
Response Hypothesis exactly giraffes eat.
Undergraduate =~ —>» (Fallback)
students
Feedback
Giraffes aren't carnivores!

Figure 1: Tllustration of the task model. Student responses (left) are associated
with hypotheses (centre), which cause feedback to be returned to the student
(right).

or mistake is a mistake class. A response may belong to several mistake classes,
and even to correct and mistake classes, but no response belonging to a mistake
class may be truly correct.

Figure 1 illustrates the task model for a single task. Note the presence of a
hypothetical fallback hypothesis, which is matched if a response contains some
knowledge not matched by the other hypotheses. For example, “Giraffes eat
grass and beans” could possibly match the first hypothesis, but “beans” isn’t
something that giraffes eat, so this misconception must be captured in some
way.

2.1.4 Creating a task

When creating a task, it is the instructor’s responsibility to create hypotheses,
feedback items, and assign hypotheses to feedback items. This implies that the
instructor needs to know of every possible misconception ahead of time so that

11



all students can get immediate feedback. However, it is also possible to create
missing hypotheses and feedback items later, once there are responses, at the
cost of delaying feedback assignment. Once the hypotheses and feedback items
are created, they can be assigned immediately and future students will benefit.

Researchers have explored ways to ease feedback creation and optimize the
quality of feedback during the creation phase (for example, [92] — more in
Section 3 on page 20). Creating feedback is outside the scope of this work —
it is assumed that good feedback has already been created and that the only
problem that remains is assigning it.

To achieve immediate feedback assignment, a machine must automatically
match responses to hypotheses. Thus, it is important for the instructor to
design tasks in such a way that they be easy for machines to understand. If
the prompt is too complex, then the hypotheses and responses will also be
complex, raising the likelihood that the machine makes a mistake. Algorithms
that “understand” natural language are still in their infancy, with state-of-the-
art language models reaching a human level of performance only on very specific
language understanding tasks [17, 107].

2.1.5 Assigning feedback

This work deals with the problem of matching student responses to task hy-
potheses. As mentioned above, enumerating every possible response is imprac-
tical. Responses containing tricky language elements such as negation, or vari-
able sentence structure, might also be too challenging for classical language
processing tasks to solve. Consider the following hypothesis and responses:

Task: Write a sentence about Charlie Chaplin and what he is
known for.
Hypothesis: Charlie Chaplin was a popular film star.
Response A: Everyone loved seeing Charlie Chaplin in (T2.2)
mouvies.
Response B: As a film star, Charlie Chaplin was very
popular.

Perhaps one can see how a computer might naively match the response B to
the hypothesis using classical NLP techniques, but what about A7 Apart from
the name, the sentence is entirely different in structure even though it conveys
the same information.

Sentence similarity approaches such as bag-or-words or word embeddings
fail here. Because of its different structure, response A would be judged as being
far from the hypothesis. Worse, two contradicting sentences may appear very
similar:

12



Task: How is shopping related to financial responsibility?
Hypothesis: Shopping teaches you to be careful with money. (T 2.3)
Response: Not shopping teaches you to be careful with money.

The addition of the negation makes the sentences very similar but distinct in
meaning. A sentence similarity algorithm would score them as very close. Or
consider modifying Response A to the Charlie Chaplin task by replacing the
word “loved” with “avoided”. These words aren’t exactly antonyms, yet com-
pletely change the semantics of the sentence while preserving perfectly its struc-
ture.

A response should match with a hypothesis not by its structure or syntax,
but by its meaning. The algorithm should understand the response and hy-
pothesis and draw conclusions about whether or not they mean the same thing.
This is the task of Natural Language Understanding, a crossing of NLP and Al
that aims to endow machines with reading comprehension and reasoning. This
work shall explore precisely how these Al-driven methods can be applied to ver-
ify the correctness of student responses and extract any mistakes the student
might have made by matching responses to correct and mistake hypotheses.

2.2 Natural Language Inference

Natural Language Inference (NLI) is a broad sub-task of Natural Language
Understanding (NLU) and Natural Language Processing (NLP) that deals with
recognizing entailment relationships between two texts. A premise text p is
said to entail a hypothesis texti h if h can (most likely) be inferred from p. In
similar words, p semantically implies h, which we denote mathematically with
the relation p E h, following MacCartney’s and Manning’s notation [78, 79].
The entailment relation is an if-and-only-if relation. The simplest form of NLI
is therefore a classification task that results in one of two outcomes:

NLI2—WAY<pu h> =

ENTAILMENT ifpEh
NOT ENTAILMENT if p¥# h

We can complicate the NLI problem further and split the NOT ENTAILMENT
class into two other cases: CONTRADICTION and NEUTRAL:

ENTAILMENT ifpEhR
N LI3way(p,h) = { CONTRADICTION if p E —=h
NEUTRAL ifpEhApE-h

ITo avoid confusing the meaning of “hypothesis”, this report shall use the term “NLI
hypothesis” or “language hypothesis” to refer to a hypothesis in the context of NLI, and
“task hypothesis” to refer to a hypothesis within a learning task, when the meaning is not
clear.
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The three-way NLI definition discriminates between contradictory texts and
non-contradictory texts. Roughly speaking, if given p then h Certainlyi cannot
be true, p is said to contradict 4. An alternate formulation is that the opposite
of h follows from p.

In the final case, p implies neither h nor —h. The outcome is NEUTRAL. The
truths of both p and h are independent, and the statements are compatible
[78]. This outcome may happen when the texts are unrelated, or if the texts
are related but there is some knowledge in h that is not fully covered by p. For
example, the premise

p: The blue fox goes swimming
entails the hypothesis
hy: The fox goes swimming
but using the hypothesis
ho: The fox goes swimming in the lake

produces the prediction NEUTRAL since the premise cannot prove or disprove
that the fox goes swimming specifically in the lake.

Let us consider three examples from the MultiNLI corpus [147].

p: While it’s probably true that democracies are unlikely
to go to war unless they’re attacked, sometimes they are
the first to take the offensive. (T24)

h: Democracies probably won’t go to war unless
someone attacks them on their soil

p: Harlem was our first permanent office, he said.

(T2.5)
h: Harlem did a great job
p: What’s truly striking, though, is that Jobs has never
really let this idea go (T 2.6)

h: Jobs never held onto an idea for long.

Text T 2.4 is an example of ENTAILMENT. The meaning of A can be
directly inferred from p. A human reading p would in all likelihood say

2or most likely, depending on one’s interpretation of the NLI task

14



that h is a logical consequence of p. Text T 2.5 shows a premise and
hypothesis which are NEUTRAL. Although the subject matter is similar,
there is nothing in p that would imply that h is true or untrue. Text
T 2.6 shows a CONTRADICTION. The premise contains knowledge that
is at odds with the hypothesis. A human reader, having read p, would
assume that h is false.

J

The duty of an NLI model is to implement the above definitions in a
computer program. An NLI model takes a text pair (p, h) and returns a tuple
of probabilities for each 2-way or 3-way outcome.

Table 2 shows the 2-way and 3-way NLI problems and their corresponding
outcomes depending on the relationship between p, h, and —h.

Note the special case where p F h A p E —h. Such a case is a logical con-
tradiction and should never happen in the real world (however, because natural
language is ambiguous, it sometimes does! See Text T 6.1). If such a case is
indeed encountered, an NLI model is free to choose an outcome based on the
knowledge that it has. The outcome is undefined. In the world of machine
learning, NLI datasets are labeled by human annotators who may choose only
among the valid labels, therefore an ML model would never encounter an ex-
ample where the gold truth is this undefined condition.

pFh pEF-h 2-way outcome 3-way outcome

v X ENTAILMENT

X v NOT ENTAILMENT CONTRADICTION
X X NOT ENTAILMENT NEUTRAL

v v UNDEFINED

Table 2: Table of NLI outcomes for 2-way and 3-way entailment. The last
row is a don’t-care case that should never arise in practice since it a logical
impossibility — the outcome for this case is undefined.

While most present work in NLI research deals with the 3-way definition
of NLI, this work deals mostly the 2-way definition. In the context of digital
learning, whether a response entails a task hypothesis or not is a yes/no decision
— no distinction needs to be made between NEUTRAL and CONTRADICTION.

A variant of entailment, called bidirectional entailment, is a property
of a text pair that indicates semantic equivalence:

p=hifandonlyif pEFhAREDp
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Premise Hypothesis Label

People are watching while a The bridge is under con- Entailment
construction crew builds a struction.

bridge.

A cricket batsman has been A cricket game is taking Entailment
bowled out middle stump. place.

An old man with a braided A 70 year old man with a Neutral
beard wears a tie dye shirt. beard.

A silhouette of a man walk- The man is very tall Neutral

ing.

A person in jeans is stand- a dog is doing a wheelie Contradiction
ing up and doing a wheelie

on the back of a motorcycle.

A child splashes in a lake. A child plays soccer. Contradiction

Table 3: Example premise-hypothesis pairs from the SNLI dataset. SNLI was
constructed from the Flickr30k dataset [150] of image captions.

Or, p is equivalent to & if both texts entail each other. In this case, both p
and h contain exactly the same information. We can say that p is a paraphrase
of h and vice versa. Bidirectional entailment is explored deeper in Section 5.5.

NLI is also known by the name Recognizing Textual Entailment, or RTE.
Many papers explicitly state that the two terms are interchangeable, and pref-
erence for one over the other seems to be subjective [102]. There is no consensus
yet in the NLP community on the precise difference between the two terms; this
work shall use the term NLI in order to be consistent with published language
models and datasets, which overwhelmingly prefer to use NLI in their names.

Table 3 shows a few premise-hypothesis examples from the SNLI dataset
[16].

2.2.1 NLI has broad applications

The authors of the first NLI challenge [32, 33] suggest many different applica-
tions of NLI in real-world settings. A few applications of note:

Information Retrieval (IR) A user query is submitted to an IR system,
which considers its documents as premises. Documents which entail the
user query are returned.
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Comparable documents Given two documents, the system identifies sen-
tences in document A that are lexically similar to sentences in document
B. If these sentences entail, then the documents are comparable. The ap-
plications of this are finding related news articles, or this approach could
also find a niche in plagiarism detection.

Question Answering (QA) Candidate answers from an open-book QA sys-
tem can be validated or ranked by recognizing entailment between the
document containing the answer (p) and a cloze statement augmented
with the retrieved answer (h).

Answer assessment This is the application which is most relevant to this
work. Student responses to open-ended questions are check for entailment
against a reference answer. The answers are scored depending whether
they entail or do not entail the reference.

The answer assessment of NLI ties in very well to the task model proposed
in Section 2.1.3 on page 10. Student responses to tasks are matched with task

hypothesis by submitting to an NLI model (a) the student response r as an NLI
premise, and (b) a task hypothesis h as the NLI hypothesis. If the model predicts
ENTAILMENT, then r belongs to h’s class of responses. Each task hypothesis
should have some associated feedback, and the feedback of entailed hypotheses
are shown to the student. If r entails only the correct task hypothesis, then the
response is graded as correct and the student can move on to the next question.
Otherwise, the student tries again on the same task. This response-feedback
cycle is illustrated in Figure 2.

FEEDBACK DELIVERY

‘ FEEDBACK
4>{ Response }—ENTAILMENT—) Hypothesis ~ASSIGNMENT Feedback
S

Student
Figure 2: The feedback cycle based on the task model in Section 2.1.3 on page 10

using an NLI approach to feedback assignment.

2.2.2 NLI is a vague task

NLI is not a precise science. For a premise-hypothesis pair (p, h), determining
the gold label can be difficult or even impossible, depending on the context and
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wording of the two texts. It therefore follows that the process of determining an
entailment relationship between two texts is error-prone and greatly dependent
on training data when resolving ambiguous cases.

Section 6.1 explores (non-exhaustively) several sources of ambiguity and
how they make the task of NLI challenging and sometimes non-deterministic.

2.3 Taskbase

Taskbase AG is a Ziirich-based company that develops tools for online learn-
ing. Its major product is the Taskbase Learning Application Platform (which
we will call the Taskbase Platform throughout this report, see Figure 3 on
the following page for a screenshot), a web application that facilitates evaluat-

ing students’ knowledge and learning progress. The Taskbase Platform allows
instructors to create digital assignments for students using a variety of ques-
tion types (e.g. multiple choice, mathematics, fill-in-the-blank, short answer),
evaluate student responses using different classical and Al methods, and return
personalized feedback to the student based on mistakes that the student makes
in their response.

Taskbase’s users speak many languages. Datasets collected from the Taskbase
Platform include texts in English, German, French, and Italian. It is important
that NLP solutions adopted by Taskbase can handle different languages, or even
a combination of languages in the same task.

The feedback model in the Taskbase Platform is similar but not identical
to the task-response-hypothesis model introduced in section 2.1.3 on page 10.

This Masters project was devised directly from Taskbase’s use case in re-
searching a “universal AI” that can handle natural language responses to tasks
in a variety of domains. This project helps Taskbase answer the following ques-
tions:

How do state-of-the-art NLI models behave?

What are the shortcomings of current NLI models on mono- and multi-
lingual corpora?

e Can current NLI models be used directly for feedback assignment in the
real world?

How can current NLI models be improved so that they perform better in
a digital learning setting?

For reasons of confidentiality and data privacy, this report will include no
original data submitted by users on the Taskbase Platform.
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= Taskbase Climate change

G Content What do you know about climate change? Summarize in max. 30 words.

Climate change causes weather patterns everywhere to be disrupted.

Girl and Dog
Earthquake Climate change causes weather patterns everywhere to be disrupted.
® Climate change ° The answer is true because climate change has been proven to cause

disruptions in weather patterns.

O Language Learning

O Math What do you know about climate change? Summarize in max. 30 words.

the earth is cooling down

the earth is cooling down

° The answer is false because the earth is actually warming up. Climate change
is caused by the earth's increasing temperature.

What do you know about climate change? Summarize in max. 30 words.

i dunno but my mom says she doesn't believe in it

idunno but my mom says she doesn't believe in it

° We don't believe that you don't know anything. Try again!

° The answer is false because it is not based on any facts.

Figure 3: A modified screenshot of Taskbase’s learning platform showing a task
about climate change. The bottom two responses below the black line are edited
in. They show how relevant feedback is assigned to incorrect responses.
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3 Prior work

This section presents prior work and lessons learned in (a) feedback assignment
in digital education and (b) Natural Language Inference.

3.1 Feedback

The research of how to give constructive feedback to students is a long-standing
effort, which unfortunately has lost steam due to the limitations (of time, effort,
and otherwise) of assessing students in a paper-and-pencil setting. Computer-
aided instruction and automation of student assessment opened the door to
previously-unknown branches of research, such as large-scale feedback assign-
ment and real-time feedback delivery.

Naturally, traditional pen-and-paper methods differ from computer-based
methods in how instruction is delivered, monitored, and evaluated, but both
still require some mechanism of creating, assigning, and delivering feedback to
students. In fact, computer-based methods appear to be preferred among stu-
dents, with learning outcomes being equal or greater than with pen-and-paper
instruction (a fact quickly learned during the recent COVID-19 pandemic). In
one example by Singleton [128], primary school students had a similar level of
success when computer-based methods were introduced but preferred computers
as a learning tool.

However, this work is not about the generalities of digital learning; It is
about how to provide constructive feedback to students, and so some knowledge
of digital learning tools and their significance in the world is assumed.

The ability to conveniently deliver instruction to larger audiences and in-
corporate digital tools in tracking/evaluating students’ work has outpaced the
ability to personalize each student’s learning experience. In the majority of
learning tools today, closed-ended questions are the norm because they can be
evaluated by machine easily.

Prior research in improving the marking and feedback process appear to
focus on three areas: constructing, assigning, and delivering feedback. Most
literature appears to focus on applying feedback strategies in only a few specific
fields: mathematics, reading comprehension, computer science, and engineer-
ing. However, we shall assume that the lessons learned apply to all subjects of
learning equally; This work does not assume any specific subject.

3.1.1 Constructing feedback

Constructing feedback involves creating and organizing feedback items. Many
different types of feedback exist, and not all have equal usefulness and didactical
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value to students. Feedback creation is also a process, with specific procedures
and guidelines which help the feedback creator to design feedback that generates
positive emotions from students. Feedback additionally has different character-
istics which affect its utility. This subsection also covers the organization of
feedback into useful schemes that helps instructors recall feedback items during
manual feedback assignment and feedback improvement.

Valerie Shute has already explored the properties of formative feedback
[125]. These properties are summarized on page 9 of this work. To review, good
feedback should be elaborative (i.e. elaborates on the student’s response in the
context of the given task), and specific (i.e. addresses particular elements of the
response, in particular misconceptions).

Shute describes 12 types of feedback, of which a few are most common in
digital learning for closed-ended tasks:

Verification Also known as “correct” /“incorrect” feedback. Also can take the
form of “X% correct”.

Correct response Provides the correct response to a task with little additional
information.

Try again If the student’s response is incorrect, prompts them to try again. If
it is correct, no feedback is given and the student moves on.

Some further points that Shute makes are:

e Feedback items should not be normative, that is, they should not compare
a student to others. This disadvantages poor performers by demotivating
them from performing well on later tasks and from seeking tailored learn-
ing paths. However, normalizing a feedback item to the student themself
may improve motivation by focusing a student on a challenging topic, at-
tributing future successes to effort, and creating a tailored learning path
by highlighting a direction of study [84].

e The effect of feedback is more significant if is provides the correct answer
instead of a correct/incorrect label, according to Bangert-Drowns et al. [6].
This approach could be combined with automated test construction [113]
to create a nearly limitless corpus of feedback, where a student receives a
correct answer feedback item to a task, and is then asked a similar question
with a different answer to check learning.

Shute also summarizes in a table 31 guidelines of effective feedback construction
and delivery [125].
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In general, Shute and Rahimi [124] conclude that feedback should be con-
structed to be (a) not overly complex, (b) relevant and unlikely to be ignored
by the student, and (c) elaborative. Black and Wiliam [12] also agree that
feedback is most useful when it is related to the student’s answer (elaborative
and/or specific), and when it is instructive and provides the student with a way
forward.

Feedback creation is a time-consuming process, and one which does not
always have benefits. Mirmotahari et al. [89] and Moons et al. [92] claim that
the process of creating re-usable feedback items is not time-saving in the short-
term, as teachers spend as much time constructing and organizing feedback than
is saved with the automating feedback assignment. However, benefits do begin
to emerge if feedback is re-used across multiple offerings of the same course.

Moons et al. [92] propose a framework for creating and organizing so-
called “atomic feedback”, that is, feedback items which focus on one thing
and one thing only from a student’s response. They argue that atomic feed-
back is re-usable, modular, and organizable into a hierarchy of categories which
makes retrieving the proper feedback item easier in by-hand feedback assign-
ment. Atomic feedback has the advantage of being composable and combinable
when a response necessitates more than one feedback item. However, the au-
thors focused on tasks in mathematics. It is unclear whether the same strategy
works for other subjects, especially writing- or language-oriented ones.

Recently, AT has been applied to automate the process of creating feedback.
Bernius et al. [10] present a system called CoFee which uses a machine learning
approach to suggest feedback to open-ended exercises. The authors claim that
85% of its suggestions were accepted by teachers, and 5% were accepted with a
minor modification.

Table 4 on the following page summarizes this section’s cited literature.

3.1.2 Assigning feedback

Assigning feedback means determining which feedback items are most relevant
to a certain student response. This section focuses foremost on the automation
of this process.

Much literature in this field focuses on the grading of essays instead of
open-ended questions, but since the goal of semantic analysis is similar, papers
on automatic essay grading are included.

The first essay-scoring system, Project Essay Grade (PEG) was developed
by Ellis B. Page [99], who also gives the lofty claim that his system produced
outputs indistinguishable from those of human essay scorers on technical and
creative benchmarks. Even earlier, in 1966, he published a popular science
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Meta-

Reference Summary .
analysis
Bangert-Drowns et al. [6] Correct-answer feedback is more valu-
able than correct/incorrect label.
Bernius et al. [10] AT can assist in feedback creation.
Black and William [12] Feedback should be related to the stu-
dent’s answer and instruct a way for-
ward.
McColskey et al. [84] Feedback should be relative to stu-
dents’ own progress, not other students.
Mirmotahari et al. [89] Constructing feedback does not imme-
diately save time.
Moons et al. [92] Feedback should be atomic. Atomic
feedback can be organized hierarchi-
cally. Constructing feedback does not
immediately save time.
Rodrigues and Oliveira [113]  Creating of exercises and tests can be
automated.
Shute [125] Feedback should be elaborative and v
specific.
Shute and Rahimi [124] Feedback should mnot be complex, v

should be relevant, should be unlikely
to be ignored, should be elaborative.

Table 4: Summary of literature cited on how to effectively construct feedback

items.

article called “The Imminence of Grading Essays by computer” [98], which even

described for the first time the possibility of giving tailored feedback to essays!

Here is what Arthur Daigon suggested as a tailored feedback item to an essay,

re-printed in Page’s article:

John [we are told that using first names soft-

ens criticism], please correct the following mis-

spellings: beleive, recieve. Note the ie, ei prob-

lem. You overuse the words interesting, good,

nice; then was [sic] repeated six times. Check trite

expressions. All of your sentences are of the

subject-verb variety and all are declarative. Re

construct. Check subject-verb agreement in sec-

ond paragraph. You had trouble with this in
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your last paper. Title lacking. Do the follow-
ing related assignment for tomorrow, etc.

Page’s early efforts were controversial at first, and not a commercial success.
The greatest failure in PEG was not technical, but rather stemmed from the
social restrictions and lack of interest in using expensive computers for mere
essay-grading. Page’s work also failed to spark any technological revolution
in NLP, but he continued to work in this field for many years. Page’s later
experiments in 1995, based on the PEG system, would go on to supposedly
become “more reliable than a 6-judge panel” [146].

Whittington and Hunt [146] provide a review of methods for assessing “free-
text” or “free-form” responses in 1999 or earlier, including Page’s PEG, Latent
Semantic Analysis [69], similarity scores, and grammar-parsing techniques.

As early as 1998, Larkey [70] explored automatic essay grading using prim-
itive machine learning techniques: Bayesian independence classifiers, k-nearest
neighbour classifiers, and linear regression. The next few years would produce
similar papers in automated grading of free-form answers, many claiming that
automated essay grading produces similar accuracy to human correctors [18, 19,
41, 83, 90, 117, 118, 131, 135] (see Table 5 on page 26).

More advanced techniques came later. Noorbehbahani and Karden in 2011
[96] proposed a modified BLEU algorithm [100] for free text assessment. Ro-
driguez and Oliviera [113] in 2014 proposed “a system for formative assessment...
of students’ progress” which automatically creates “practice” exams based on
questions from previous exams. These questions can be open-ended, and are
matched to reference answers by classical syntactic and semantic similarity. He,
Hui, and Quan [51] proposed ensemble methods of previously-seen systems.

Approaches to grading short-answer questions that explicitly mention the
NLI task or entailment-based methods appeared around 2007. Even prior work
has been moving (perhaps unknowingly) towards NLI. Harabaigu, Hickl, and La-
catsu [49] exemplified an NLI approach to text summarization. In their method,
texts are split up into “Semantic Content Units” (SCUs), which represent indi-
vidual atomic propositions. While not directly related to digital learning, such
method may be useful for extracting pieces of knowledge from the premise and
hypothesis and comparing the two sets to determine entailment.

Following exactly this thread, Nielsen et al., [95] proposed methods of
assessing student answers by breaking down texts into “facets” that can be
compared to facets in other texts. Sukkarieh and Stoyanchev [132] built an
entailment engine (based on a previous automatic grading system [71]) from
classical NLP techniques such as grammar parsing, morphology analysis, and
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tree matching. Dagan et al. cited both of these works in a later review of
recognizing textual entailment [33].

In 2009, Mohler and Mihalcea published a review [91] of various NLI-based
approaches to short answer grading. They concluded that, at the time, the best
approaches used LSA.

What all of these more modern works have in common is that they compare
a student text to some reference text provided by the instructor, and provid-
ing a grade as feedback, instead of relying on heuristics like PEG. Very little
mention is made to assigning personalized feedback, except for Mitchell et al,
[90], who mention the possibility of matching responses against “specifically in-
valid” answers, and even somewhat identify the Too Much Information problem
(presented later, in Section 5.5.5 on page 50), where some incorrect knowl-

edge in an otherwise correct response nullifies its correctness. However, where
there is a correct reference answer, there can be mistake reference answers, and
personalized feedback can theoretically be given by entailing with the mistake
hypotheses, a realization that was seldom published.

Deep learning approaches to short-text scoring emerged in 2016. The first
efforts were based on LSTMs [3, 68, 103, 110]. After Vaswani’s et al. attention
paper [140], transformer-based methods appeared [21, 46, 75, 133, 142]

Other approaches appeared as well, including clustering-based methods [8,
87] and a stacked neural network method [108].

Table 5 on the next page shows a summary of these prior works and the

methods used therein.

3.1.3 Delivering feedback

The process of delivering feedback follows feedback assignment — after feedback
is assigned to a response, there are several facets of delivering it to a student.
One of these, perhaps the most obvious one, is the timing of the feedback relative
to the response submission, on which this section will focus.

Feedback has two aspects of timing:

Delay The time between when a student submits their response to a task and
the time they receive feedback. Feedback delay can be immediate, or
delayed by some time (as is the case with paper-and-pencil assignments).
The only way to achieve truly immediate feedback is via a personal tutor or
an automated system. Feedback delay is not only tied to time of correction
— feedback can be artificially delayed for a time period, or until a student
has completed a certain number of tasks (or an entire assignment).

The jury is still out on whether immediate or delayed feedback is preferred
[125]. Support for immediate feedback argues that errors are immediately
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Ref. Authors Year Method
[41]  Foltz et al. 1999 LSA
[18]  Burstein et al. 2001  Discourse parsing
[90] Mitchell et al. 2002 Knowledge extraction, pattern-matching
[83] Mason and Grover-Stephensen 2002 Knowledge extraction, tree-matching
[118]  Rudner and Liang 2002 Bayes’ theorem
[117]  Rosé et al. 2003  Syntactic analysis and Naive Bayes
[131]  Sukkarieh et al. 2003  Information extraction and IR
[135] Thomas et al. 2004 LSA
[51] He et al. 2009  Ensemble methods
[96]  Noorbehbahani and Karden 2011  Modified BLEU
8] Basu et al. 2013  Clustering
3] Alikaniotis et al. 2016 LSTM
[68]  Kumar et al. 2017 LSTM
[110] Riordan et al. 2017 LSTM
[46]  Gong and Yao 2019  Attention
[75]  Liu et al. 2019  Attention
[103]  Prabhudesai and Duong 2019  Siamese LSTM
[133]  Sung et al. 2019  Attention
[142] Wang et al. 2019  Attention; meta-learning
[21]  Camus and Filighera 2020  Attention
[108] Rajagede and Hastuti 2021  Stacked neural networks

Table 5: A non-exhaustive summary of works applying NLI or NLI-like tech-

niques to feedback assignment.

corrected and not written to a student’s memory. Support for delayed
feedback suggests that errors are often forgotten anyway and do not inter-
fere with the formation of correct knowledge once the feedback is received.

A few examples: Lemley et al. [72] at Birmingham Young University, in an
internal study, found that students receiving immediate feedback perform
better on final assessments, but students receiving delayed feedback (by
mail) complete courses faster. Dihoff et al. [36] found that immediate but
not delayed feedback enhances learning. Corral et al. [31] on the other
hand, found an advantage in delayed and correct-answer type feedbacks.
Fyfe et al. [42] do not find any advantage between the two across 38
different school classes but hint towards benefits of delayed feedback.

Evidence for the superiority of immediate and delayed feedback is present
for both sides, but every study appears to use delayed and immediate tim-
ings as independent variables, with little regard for the types of feedback
and the types of tasks that are being applied. It is possible that certain
feedback types or certain tasks are better-suited for either immediate or
delayed feedback [67] — a larger meta-analysis should be conducted to
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determine this. Overall, literature suggests that immediate feedback may
be more palatable to the education community — evidence for immediate
feedback appears to be more concrete and well-explained.

Cycle timing Bangert-Drowns et al. [6] organized learning into a five-stage
cycle, where students are most receptive to feedback at certain stages only.
The stages are:

1. The initial state, in which the student is ready to receive a task.

2. A search and retrieval state, in which the student receives a question

and recalls information to answer it.

3. A response state, in which a learner formulates a response to the
question and formulates an expectation about what the feedback will
say.

4. An evaluation state, in which a student has received feedback and
evaluates their answer.

5. An adjustment state, in which a student modifies their knowledge and
goals based on the evaluation. The adjusted knowledge determine the
next initial state.

According to Bangert-Drowns et al., feedback contributes to learning only
if delivered “mindfully”, that is, in the correct state in the cycle and with
the correct presuppositions. For example, if some feedback is available be-
fore the search and retrieval state (e.g. by a question that leaks the answer,
or a simple lookup-type task), the student “mindlessly” fills in the answer
and does not learn [125]. The feedback should also correspond to the
student’s expectations and cognitive needs (e.g. shouldn’t be too trivial,
shouldn’t be too complex). The combination of feedback and expecta-
tion also affects how the adjustment state works — a student receiving
“correct” feedback to a confident answer will feel differently about their
studies than a student receiving “incorrect” to an unconfident answer.

Shute and Rahimi [124] stress that feedback should be delivered in “man-
ageable units” that do not overwhelm the learner. This can be difficult to
balance in a setting like the “atomic feedback” paper [92] where several atomic
feedback items could be relevant, or in the situation of Daigon’s quote on page
23. Depending on the task, there is a balance to be struck between listing as
much feedback as possible to avoid iterating on the same task (i.e. the student
submits an altered answer over and over again but different feedback items pop
up, which can be frustrating), and suppressing certain feedback items to avoid
confusing and overwhelming the student.

27



Shute’s table of 31 guidelines [125] also lists several dos and do nots relating
to the delivery of feedback.
Table 6 summarizes this section’s cited literature.

Reference Summary Meta-.
analysis
Corral et al. [31] Delayed feedback enhances learning.
Bangert-Drowns et al. [6] Feedback must be delivered in appropriate
stage of learning.
Dihoff et al. [36] Immediate feedback enhances learning.
Fyfe et al. [42] No advantage between immediate and de-
layed feedback.
Shute [125] There is support for both immediate and v
delayed feedback.
Kulik and Kulik [67] Formative feedback is better immediate; v
Summative feedback is better delayed.
Best timing depends on features of stud-
ies.
Lemley et al. [72] Immediate feedback yields better perfor-
mance; Delayed feedback yields faster
course completion.
Shute and Rahimi [124] Feedback should be delivered in manage- v

able units

Table 6: Summary of literature cited on how to effectively deliver feedback to
students.

3.2 Language models and NLI

Faithful folk could argue that Natural Language Processing has roots in bibli-
cal times, after Yahweh split up humanity’s one common language and people
suddenly had to find ways to understand each other (King James Bible; Gen-
esis 11:1-9). Shortly afterward, in 1947, the idea of a mechanized translation
machine was suggested by Warren Weaver [60]. Weaver, a war researcher, was
inspired by advancements in cryptography to “decode” foreign text (specifi-
cally Russian documents) into legible English. He also correctly doubted this
mechanized method’s feasibility due to “semantic difficulties because of multi-
ple meanings, etc.”. To the credit of his foresight, the first Russian-to-English
translation machine was demonstrated in 1954 [60, 61].

However old NLP might be, the fields of Natural Language Under-
standing (NLU) and Natural Language Inference (NLI) are relatively
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young. NLU is a sub-task of NLP, concerned with teaching machines to truly
“understand” the meaning of natural language and its context, beyond restricted
syntactic or lexical meanings of language’s constituent parts. NLU encompasses
several sub-sub-tasks itself, of which NLI is one.

3.2.1 Early NLI

The roots of NLI lie in scientists’ efforts to analyze the semantics of natural
language. The syntaz of language was by the end of the 20th century very well
understood, in large part thanks to Noam Chomsky’s works [24, 25], but it was
well-established at the time that semantics were difficult to formalize.

NLI emerged as a popular field of study during the first PASCAL RTE chal-
lenge [32]. This challenge presented, for the first time, the general task of recog-
nizing entailment between two texts. The challenge was a success, receiving 17
distinct submissions, and continued for 6 more iterations until 201 li. However,
NLI was found to be tremendously difficult for machines, with “good” perfor-
mance producing around 55% to 65% accuracy in the first few challenges®. Each
iteration of the PASCAL RTE challenge changed the themes of the datasets,
with many participants considering subsequent challenges to be “easier” than
the year before.

In the earliest efforts to develop NLI [22], systems relied on simple ap-
proaches based on word-to-word associations [45], syntax-level analysis [139],
knowledge extraction [114], formal logic [79, 80], or combinations thereof®.
Word-to-word approaches to NLI were augmented by rich word-association
datasets such as WordNet [88] and FrameNet [5]. These datasets were com-
plete enough that, despite being composed of a fixed number of hard-coded
associations, early NLI models were able to achieve better-than-chance perfor-
mance by exploiting a wide corpus of word relations and inferring their meaning
from a limited textual context.

3.2.2 Machine learning models emerge

At the second RTE challenge (RTE-2), Bos and Markert argued that logical
inference techniques have a ceiling of usefulness and presented one of the first
machine learning techniques for NLI [14, 15]. Several other machine learning
submissions have also appeared during this time [52, 62]. These models worked

Shttps://tac.nist.gov//data/

4The first three RTE challenges were on 2-way entailment, so this performance was hardly
better than chance.

5Early RTE challenges and literature in this field seemed to have dropped off the map —
many papers are not indexed anymore in journals or archives.

29


https://tac.nist.gov//data/

primarily on generating sentence or word embeddings using classical NLP tech-
niques, then classifying using non-neural learning algorithms like SVMs or k-
means clustering.

Bowman et al. were one of the first to apply deep learning techniques to
NLI using a classifier neural network fed by RNN and LSTM RNN networks
which generate sentence embeddings [16]. Liu et al. [76] and Conneau et al.
[28], among others, followed with increasingly complex LSTM and convolutional
architectures.

Around this time, the concept of attentionﬁ was introduced [4]. This point
began a shift from complex NLP pipelines with distinct elements for features
like negation detection, synonymy, antonymy, PoS tagging, etc., to end-to-end
deep learning systems. Rocktéschel et al. [112] presented a fully-neural, end-
to-end LSTM approach to NLI that did not rely on an independent sentence
mapping step, and extended that approach with attention. In 2017, Vaswani et
al. proposed the Transformer architecture for sequence-to-sequence tasks (like,
for instance, reading a sentence) based solely on attention instead of recurrent
networks, in the highly-cited paper Attention is all you need [140]. Since then,
the world of language models has undergone a dramatic Transformation’, with
all new state-of-the-art models since then being based on this new architecture.

In 2015, Dai and Le [34] achieved state-of-the-art using a “semi-supervised
pre-training” approach in recurrent networks and NLP. In this approach, a lan-
guage model is trained on a corpus of text in an unsupervised or semi-supervised
fashion (by allowing the training algorithm to generate its own labeled examples)
before being trained on a smaller set of labeled, domain-specific examples. This
finding paved the way for the pre-train-then-fine-tune paradigm that is most
common today — pre-train a language model to a generalized form, then fine-
tune on a downstream task quickly, since neural network weights do not need to
be learned from scratch [40]. The concept of pre-training was subsequently ap-
plied in ELMo [101], ULMFiT [57], and OpenAlI in GPT-1 [104]. Pre-training,
however, is not itself a new concept. It dates back to 2010, when Erhan et
al. demonstrated that pre-training adds robustness and better generalization
capabilities to a deep network architecture [40].

How is pre-training relevant to NLI? A pre-trained General Language Model
(GLM) has learned weights to “understand” natural language some degree, in
that it can predict the next word or a masked word in a sequence based on
contextual cues. Fine-tuning a GLM on a task-specific dataset enables the

6 Attention in NLI is, roughly, a non-recurrent and somewhat fully-connected mechanism
where a neural network learns which words or tokens are most relevant to each other. For
example, the word “her” might attend strongly to “girl”, but not to “running”.

7pun intended
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model to more quickly learn about the downstream task, since it doesn’t need
to learn the language anymore. In fact, models can be fine-tuned on almost any
downstream task quite cheaply, since the pre-training knowledge transfers to
the downstream task.

At the end of 2018, Google’s BERT [35] was open-sourced. This model
would have important consequences in the next few years, as it inspired many
similar models such as RoBERTa in 2019 [77], XLM-RoBERTa in 2019 [29],
Sentence-BERT in 2019 [109], DistilBERT in 2019 [119], BART in 2020 [73],
and DeBERTa in 2021 [50]®. Google then followed up with T5 [107] and mT5
[149], novel and larger Transformer-based architectures.

The thing that all these models since 2018 have in common is that they are
pre-trained on massive text corpora collected from digital, print, and spoken
sources. In many cases, these datasets are so large that it is physically possible
only for large companies with enormous compute power to handle them and
train models on them. Section 3.2.3 discusses datasets more closely.

In the beginning, these pre-training text corpora were English-only, al-
though researchers quickly investigated the possibility of multi- and cross-lingual
language models by aligning word and sentence representations using paired sen-
tences in various languages. Conneau and Lample at Facebook [27] provide a
good summary of this prior work and also propose XLM, a training methodology
to produce cross-lingual GLMs that led to the development of XLM-RoBERTa
[29], a significant cross-lingual GLM which has been extended for many differ-
ent tasks. Google has also moved to only providing their BERT model in a
multilingual variation®.

Today, the key in deep language models is “bigger is better.” Language
model sizes are growing very fast in a very short time (see Figure 6 on page 92)
[17, 107, 116], to the point where they are impossible to use without owning
(or renting, in the case of cloud computing) specialized hardware. Table 7 on
the next page and Figure 6 on page 92 illustrate this growth. This trend was

prophesied by Shazeer et al. [122] in 2017, who warned the NLP world of the
» 10

coming of “outrageously large neural networks.

3.2.3 Hand-curated datasets became machine-collected and crowd-
sourced

The first few NLI datasets were small-scale. The first dataset introduced in the
PASCAL RTE challenge consisted of 1367 pairs. In 2014, the SICK dataset

8DeBERTa would go through two more major versions
9urlhttps://github.com/google-research/bert /blob/master /multilingual.md
10Hopefully we won’t run out of superlatives.
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Model Year # of parameters

OpenAl GPT-2 [105] 2019 1.5B
Google T5 [107] 2020 11B

OpenAl GPT-3 [17] 2020 1758
BigScience BLOOM [11] 2022 176B
Deepmind [106] 2021 230B
NVIDIA Megatron-Turing NLG [129] 2022 530B
Google GLaM [37] 2021/2022 1.2T

Table 7: A non-exhaustive list of today’s latest big language models and their

sizes.

was introduced [82], composed of about 10 000 pairs, which were constructed
by taking several grammatical variations of English sentences. Deep learning
had not yet been introduced to NLI yet, so early NLI datasets were test-only or
contained a limited number of examples for training.

In 2015, Bowman et al. were the first to create an NLI dataset that makes
the leap to the large scale: the Stanford Natural Language Inference (SNLI)
corpus [16]. This dataset was groundbreaking in that it was the first dataset of
sufficient size to train “data-intensive, wide-coverage” models. All of the texts
in this dataset were written by humans, annotated by humans, and collected
by machine from the Flickr 30k corpus (a dataset of image captions from the
Flickr image-hosting service; [150]). It has, however, been criticized for being
made up exclusively of image captions, which makes it ideal for describing scenes
but limits its utility in other areas, like understanding conversational language.
Nevertheless, SNLI was a major milestone in the development of large-scale
datasets.

In 2018, the MultiNLI corpus was developed by Williams, Nangia, and
Bowman with the express intent to address the shortcomings of SNLI [147].
MultiNLI (or MNLI) collects sentences from 9 text sources in many formats:
face-to-face and telephone conversations, reports, letters, public domain texts
from governmental websites, and open-access non-fiction works from print and
digital media. Though smaller than SNLI (MultiNLI has 433k examples com-
pared to SNLI’s 570k), MultiNLI covers natural language more broadly. It has
been so successful that most NLI models published on HuggingFace, including
NLI versions of state-of-the-art models such as BERT, DeBERTa, T5, etc., have
been fine-tuned on MultiNLI or derivative datasets.
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Both SNLI and MultiNLI collect premises from text sources. Hypotheses
were collected by presenting a premise to a crowdsourcing worker, who conceives
one entailing, one contradicting, and one neutral hypothesis.

In the same year, Conneau et al. published the Cross-lingual Natural Lan-
guage Inference corpus (XNLI) [30]. XNLI extends the MultiNLI corpus by
translating it to 15 different languages: English, French, Spanish, German,
Greek, Bulgarian, Russian, Turkish, Arabic, Vietnamese, Thai, Chinese, Hindu,
Swahili, and Urdu. Texts were translated by professional translators. XNLI al-
lows texts to be written in any of the supported languages, even in multiple lan-
guages in a single text. The dataset is published with each premise-hypothesis
pair having the same language. Cross-language pairs are not provided but can
be constructed by sampling the appropriate text from the 15 languages. The
vast majority of cross-language NLI models are trained on XNLI or derivatives.

It is also worthwhile to mention the Cross-lingual TRansfer Evaluation of
Multilingual Encoders (XTREME) corpus, published by Hu et al. in 2020 [59].
XTREME is a broad, multilingual benchmark consisting of several different
tasks, including (a subset of) XNLI. It is most often used to fine-tune and
validate general or multi-task cross-language LMs.

A drawback of current NLI datasets is that they do not represent the space
of NLI texts found in digital learning. Both MultiNLI and SNLI consist of
premise texts collected from open corpora. While SNLI collected them from
image captions, MultiNLI collected from various sources, with the intention of
generalizing well over the English language. On the other hand, NLI for digital
learning deals with texts which are responses to questions — these texts typically
present one or several facts and should not contain bias from “colloquial” or
“conversational” language such as slang or missing punctuation. For example,
this NLI pair appears in the MultiNLI dataset which, admittedly would be
useful in building a general language processing system, does not provide much
value in as an example in digital learning:

p: yeah it’s a nice way to relax i mean in a way i mean i find it
anyway although sometimes watching the news isn’t very

relaxing i get home from from (T3.1)

h: Watching the news isn’t always relazing.

The most recent major NLI dataset is Adversarial NLI (ANLI), published
by Nie et al. in 2021 [94]. ANLI is unique in that its examples were constructed
by hand to be adversarial. That is, human annotators were given a premise text
and tasked with making a hypothesis that fools the language model into making
an incorrect prediction. It is also unique in its “Human-And-Model-in-the-Loop
Enabled Training”, in which human writers created NLI pairs with constant
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feedback from a chosen NLI model, as well as feedback from human verifiers.
This process took place in 3 rounds. In each round, adversarial examples are
written with feedback from the model, the examples are verified by humans, and
a new model is trained using the adversarial examples. As the model learns,
each round consists of more and more difficult examples.

ANLI appears to be the most effective dataset for training robust NLI
models. The authors claim that models trained on ANLI are state-of-the-art on
several existing NLI benchmarks.

Table 8 shows a summary of each NLI dataset.

Dataset name Year Size 2-way /3-way
SNLI [16] 2015 570k 3-way
MultiNLI [147] 2018 433k 3-way
XNLI [30] 2018 400k x 15 languages 3-way
ANLI [94] 2021 170k over 3 rounds 3-way

Table 8: Summary of open NLI datasets. All of these datasets are freely avail-
able.

Domain-specific NLI datasets also exist. Specifically, the study of law and
legal text processing is a major field of research, including some research on
applying NLI to those problems. Two examples on using NLI on legal texts
are COLIEE [63] and ContractNLI [66]. NLI is also used in the medical field,
for example in the MedNLI dataset [115, 123] containing patient histories. A
dataset also exists for evaluating science knowledge in schools [65]. Unfortu-
nately, these domain-specific are still niche — most NLI evaluation is done on
general-purpose datasets such as SNLI or MultiNLI, which several researchers
lament as being an insufficient benchmark for most real-world NLI work and
giving very little regard to domain-specific applications [102, 145].
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4 Goals and research questions

4.1 Goal

The goal of this thesis is to obtain an understanding of the intimate workings
of NLI models for the purpose of feedback assignment in digital education,
specifically, on datasets from the Taskbase Platform. It seeks to use these
findings to devise a framework of: themes that must be considered when creating
NLI-friendly tasks; techniques that can be used to adapt existing tasks to be
more NLI-friendly; and possible solutions to major pitfalls that NLI models
display.

4.2 Research questions

This thesis aims to answer the following questions:

e How do various NLI models perform on NLI corpora? What are the con-
tributions of model architecture and fine-tuning datasets to performance?

e What are the shortcomings of current NLI models on multilingual, open-
ended tasks in the setting of digital learning?

e How can the NLI task be modified or augmented to perform better in
digital learning tasks?

e How can digital learning tasks be adapted in order to better take advantage
of the capabilities of NLI?

e Does NLI exhibit certain emergent behaviours that can be exploited for
digital learning?
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5 Characterizing NLI models

Many different experiments were conducted to determine how current NLI mod-
els behave on freely-available NLI datasets and datasets from the Taskbase Plat-
form. First, a benchmark was performed over the widest range of models and
datasets. Later experiments were focused on examining a particular property
or technique. When an experiment revealed some interesting behaviour, it was
explored further in each experiment’s discussion section.

5.1 Experimental setup
5.1.1 Libraries and infrastructure

This work used Python!! versions 3.7.11 and 3.10.5. Major libraries used were
Numpy!?, Scikit Learn!?, Pandas!?, spaCy!®, PyTorch!S, Huggingface Trans-
formers!'”, Huggingface Datasets'®, Matplotlib!®, Seaborn?. NLI models and
datasets were obtained from Huggingface?!. Inference was performed on an

AWS EC2 g4dn.xlarge instance with a single NVIDIA T4 GPU and 12 GB of
VRAM.

5.1.2 Datasets

Datasets are in English unless otherwise specified. Twelve NLI datasets were
used throughout this work:

Taskbase SimpleK A dataset from Taskbase’s corpus, in which both premises
and hypotheses are keywords or sentence fragments. Taskbase SimpleK
consists of approximately 65 entailing pairs and 1325 non-entailing pairs.
The dataset is unbalanced because the list of non-entailing pairs was con-
structed roughly by taking the Cartesian product of a set of premises and
non-entailed hypotheses.

Taskbase Buyer-Seller A dataset from Taskbase’s corpus, containing responses
and hypotheses from a single task: What are the responsibilities of the

Hhttps://wuw.python.org/
12https://numpy.org/
Bhttps://scikit-learn.org/
Mhttps://pandas.pydata.org/
5https://spacy.io/

16https://pytorch.org/
17https://huggingface.co/docs/transformers/index
18https://huggingface.co/docs/datasets/index
9https://matplotlib.org/
20https://seaborn.pydata.org/
2Ihttps://huggingface.co/
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buyer and seller in a transaction? Premises and hypotheses are all in
sentence format and share similar vocabulary. This dataset contains 135
entailing pairs and 18 non-entailing pairs.

Taskbase Evil Regular DE A dataset of challenging (“evil”) examples from
Taskbase’s corpus, all in German. It contains 4695 entailing pairs and
44306 entailing pairs from 34 different tasks. In the dataset’s source,
each task includes a matrix M of premises on one axis and hypothe-
sis on the other axis. For every premise p and hypothesis h, M, =
ENTAILMENT if p and h entail, and NOT ENTAILMENT otherwise. The
dataset was constructed using the Cartesian product of each matrix, re-
sulting in (premise, hypothesis, entailment) tuples. The dataset is imbal-
anced because the task matrices are sparse.

Taskbase Evil Regular EN A dataset constructed from Taskbase Evil Regular
DE by machine-translating every premise and hypothesis using DeepLE.

Taskbase Evil Hard An “extra-evil” dataset from Taskbase’s corpus contain-
ing hand-picked adversarial examples and vocabulary designed to fool NLI
models, consisting of 340 entailing pairs and 268 non-entailing pairs. The
format of the pairs are sentence fragments and full sentences. This dataset
is in German.

SNLI Derived from the test split of the SNLI corpus [16] from Huggingfaceﬁ.
Examples with no gold label were dropped. There are 3368 entailing
pairs and 6456 non-entailing pairs. The dataset is balanced for 3-way
entailment, but not 2-way.

MNLI validation combined Derived from the MultiNLI corpus [147] by con-
catenating the matched validation and mismatched validation splits from
Huggingface?!. Examples with no gold label were dropped. There are 6942
entailing pairs and 12705 non-entailing pairs. The dataset is balanced for
3-way entailment, but not 2-way.

XNLI A truncated version of the XNLI test split [30] from Huggingface2_5 con-
taining only examples in German, English, Spanish, and French. Each
premise-hypothesis pair is the same language, and each pair is repeated 4
times, once for every language There are 6680 entailing pairs and 13360
non-entailing pairs. The dataset is balanced for 3-way entailment, but not
2-way.

22https://www.deepl.com/translator
23https://huggingface.co/datasets/snli
24https://huggingface.co/datasets/multi_nli
25https://huggingface.co/datasets/xnli
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XNLI shuffled A mutation of the XNLI dataset. It has the same size, except
the premise and hypothesis languages were sampled from the list of allowed
languages (German, English, Spanish, French). For each distinct text pair,
there are 4 variations of it where the pair’s premise and hypothesis may
have different languages.

ANLI R{1,2,3} Three datasets, imported directly from the test R1, test R2,
and test R3 splits of the ANLI corpus [94] from Huggingface?. Each split
has 334 to 402 entailing pairs, and 666 to 798 non-entailing examples. The
dataset is balanced for 3-way entailment, but not 2-way.

A quick note: when a dataset (or model) appears in fixed width type, it
refers to the dataset or model adapted for this work. When a dataset or model
appears as normal text, it refers to the dataset or model as described in its
original paper. For example, a model may be fine-tuned on XNLI, but tested
on XNLI, which is the specific subset of XNLI used in this work.

5.1.3 Models

The experiments in this section use up to seven NLI models chosen for this work.
Models were selected to best cover the different state-of-the-art neural network
architectures since BERT (2019; [35]), as well as the various NLI datasets since
SNLI (2015). Only transformer-based models [140] were chosen since these
produce better performance than sentence embedding-based models or LSTMs
[35].

Seven open-access NLI models were used, each obtained from Huggingface.
To avoid having to write the full names of each model, they were given short
names which will be used throughout this work:

AT-mT5 Based on Google’s multilingual mT5 architecture [149] and trained on
MultiNLI and XTREME XNLI [59] datasets by the Alan Turing Insti-
tute?”. This model was the the first model to be explored. Other models
were added thereafter. Freely availableﬁ.

RoBERTa Based on Facebook’s RoBERTa Large architecture [77] general lan-
guage model and fine-tuned on the MultiNLI dataset. English-only. Freely
available2?.

26nttps://huggingface.co/datasets/anli

2"https://www.turing.ac.uk/
2%https://huggingface.co/alan-turing-institute/mt5-large-finetuned-mnli-xtreme-xnli
2%https://huggingface.co/roberta-large-mnli
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ML mDeBERTa Based on Microsoft’s DeBERTa v3-base architecture [50] and fine-
tuned on the MultiNLI and XNLI datasets by Huggingface user MoritzLaurer.
Freely available®”

RoBERTa LXA Based on Conneau’s et al. XLM-RoBERTa architecture and fine-
tuned on the XNLI and ANLI datasets by Huggingface user vicgalle
(LXA = Large, XNLI, ANLI). Freely available®!.

RoBERTa LX Based on Conneau’s et al. XLM-RoBERTa architecture and fine-
tuned on the XNLI dataset by Huggingface user joedav (LX = Large,
XNLI). Freely available®?.

ML DeBERTa MFA Based on Microsoft’s DeBERTa v3-base architecture and fine-
tuned on the MultiNLI, FEVER [136], and ANLI datasets by Huggingface
user MoritzLaurer (MFA = MultiNLI, FEVER, ANLI). Freely avail-
able33.

RoBERTa Ynie Based on Conneau’s et al. XLM-RoBERTa architecture and
fine-tuned on the SNLI, MultiNLI, FEVER, and ANLI datasets by Yixin
Nie, one of the authors of ANLI [94], also known by his Huggingface handle
ynie. Freely available3!.

Huggingface supports ready-made “pipelines” for many tasks, e.g. text
classification, but not all models are supported. Instead, inference using these
models was invoked manually and the output logits analyzed directly.

All of these models are 3-way entailment models. For the purposes of this
work, they were converted to 2-way by merging the NEUTRAL and CONTRADIC-
TION outcomes into a single NOT ENTAILMENT outcome.

5.1.4 Statistics

In quantitative experiments, entailment is inferred for examples in some NLI
dataset and the statistics in Table 9 on the next page are recorded. These are
the “standard statistics”.

When determining p-values, statistic means are compared for significance

using a simple Z test. Strictly speaking, the binomial test is more correct (since
ENTAILMENT-NOT ENTAILMENT is effectively an unbalanced Bernoulli trial), but
sample sizes of NLI datasets are large enough to make the Binomial test im-
practical and to justify a close approximation.

30nttps://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-mnli-xnli
3lhttps://huggingface.co/vicgalle/x1m-roberta-large-xnli-anli
32https://huggingface.co/joeddav/x1m-roberta-large-xnli
33https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
34https://huggingface.co/ynie/roberta-large-snli_mnli_fever_anli_R1_R2_R3-nli
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Stat. Definition

Acc. Accuracy. Fraction of examples whose predictions
match their labels.

Prec. E Precision of the group labeled ENTAILMENT, i.e. Of the
examples predicted as ENTAILMENT, what is the chance
that one is truly ENTAILMENT?

Rec. E Recall of the group labeled ENTAILMENT, i.e. when pre-
sented with an example labeled ENTAILMENT, what is
the chance that the NLI model will predict ENTAIL-
MENT?

FE F score of the group labeled ENTAILMENT.

Prec. NE  Precision of the group labeled NOT ENTAILMENT (simi-
lar interpretation as above).

Rec. NE  Recall of the group labeled NOT ENTAILMENT (similar
interpretation as above).

F| NE F1 score of the group labeled NOT ENTAILMENT.

Table 9: Summary of statistics collected in benchmarking experiments.

5.2 Benchmarking state-of-the-art language models

The first step of characterizing NLI models to to measure their performance
on some datasets. 7 freely-available NLI models were benchmarked on 12
datasetsf7 of which 5 come from Taskbase and 7 are open datasets. These
models were chosen to represent many different architectures and fine-tuning
schemes (a model may be fine-tuned on several datasets).

The goal of this benchmarking experiment is to get an initial overview of
which models work best for which datasets, and to discover whether certain
models or certain fine-tuning methods have an advantage over others. Close
attention is paid to how these models behave on Taskbase’s datasets.

5.2.1 Data collection

Twelve datasets were used: Taskbase SimpleK, Taskbase Buyer-Seller, Taskbase
Evil Regular EN, Taskbase Evil Regular DE, Taskbase Evil Hard, MNLI
validation combined, SNLI, XNLI, XNLI Shuffled, and ANLI R{1,2,3}.

35The ML DeBERTa MFA and RoBERTa Ynie were added later in the course of this project and
do not appear in other experiments.
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5.2.2 Method

Seven NLI models were used: AT-mT5, RoBERTa, ML mDeBERTa, ML DeBERTa
MFA, RoBERTa LXA, RoBERTa LX, and RoBERTa Ynie. FEach one was bench-
marked against all datasets without modification. There were 172 904 (p, h)
pairs in total.

Standard statistics were collected.

5.2.3 Results

1 210 328 predictions were collected (172 904 pairs x 7 models). Data were
aggregated by model and dataset, and are presented in table form (Table 21 on
page 116) and heatmap form (Figure 8 on page 113, Figure 9 on page 114, and
Figure 10 on page 115) The three heatmaps show the same data but sliced on
different axes, for better interpretability.

5.2.4 Discussion

Immediately, it is evident that there are some datasets where all models perform
well. MNLI, SNLI, and both XNLI datasets yielded very good results. This is
expected, since most models were trained on these or similar datasets. The
exceptions are RoBERTa and RoBERTa Ynie, which perform poorly on XNLI
because they were not trained on it and only understand English.

The SimpleK dataset is unbalanced towards not-entailing examples by
about a factor of 10. Therefore, all models have good NOT ENTAILMENT pre-
cision and recall. Most models also have good ENTAILMENT recall, suggesting
that these models recognize entailing cases better, but sadly, low ENTAILMENT
precision suggests that it likely that these models bias predictions towards EN-
TAILMENT instead. The exceptions to this rule are the two DeBERTa models,
which have low ENTAILMENT precision and recall.

ML DeBERTa MFA has a chance to redeem itself, along with RoBERTa Ynie on
the Taskbase Buyer-Seller dataset, where these two models are the strongest
performers. This dataset is unbalanced favouring entailing examples. The
commonality that these models have is that they were trained on the FEVER
dataset.

The two Taskbase Evil Regular datasets are challenging because not
only are they extremely unbalanced favouring NOT ENTAILMENT examples, but
their examples are dirty and extremely variable in structure (e.g. sentence struc-
ture, full sentences versus fragments, punctuation, incomplete responses, etc.).
No models have good ENTAILMENT recall except RoBERTa LX and RoBERTa LXA
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close behind it. However, ENTAILMENT precision and ENTAILMENT Fj are uni-
versally bad.

All multilingual models perform mildly well on the Taskbase Evil Hard
dataset. The best performers are RoBERTa LXA and RoBERTa LX. Both mod-
els are comparable, with most scores between 0.75 and 0.95, but the former
biases more strongly towards NOT ENTAILMENT than the latter. The three
ANLI datasets show the same pattern, with ML DeBERTa MFA, RoBERTa LXA,
and RoBERTa Ynie performing well since they were trained on ANLI.

In an effort to find the “best” model for the five Taskbase datasets, Figure 4
shows the number of times each model achieved a maximum statistic for a single
dataset. No single model is best for accuracy. RoBERTa LX displays a precision-
recall tradeof and likely biases predictions towards ENTAILMENT. ML DeBERTa
MFA and RoBERTa LXA show a slight increase in NOT ENTAILMENT recall, and
potentially a precision-recall tradeoff in the opposite direction. Overall, AT-mT5
achieved the most maximal Fj scores out of all models.
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Figure 4: Summary of model performance for each statistic. Each plot shows,
for one statistic, the number of Taskbase datasets on which a model achieved
maximum performance across all models. The values of some plots may add up
to greater than 5 (the number of datasets) if more than 1 model achieved the

same maximum.
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5.2.5 Wrapping up

No one particular model performs well on all Taskbase datasets. There is evi-
dence of precision-recall tradeoffs in a few models but no single model appears
to be more clever than the others on all datasets.

There is some evidence to suggest that the choice of fine-tuning dataset
makes a significant difference. Two models trained on FEVER stood out from
the rest in the Buyer-Seller dataset. However, some evidence is in favour of
architecture choice too — the two RoBERTa models trained on XNLI did better
on Taskbase Evil Hard. RoBERTa did not, since it was not trained on German.

To have a more precise overview of model performance, and whether they
are biased more towards ENTAILMENT or NOT ENTAILMENT, the unbalanced
datasets should be re-constructed to be better balanced, or the calculations
should be re-done to put greater weight on underrepresented classes.

5.3 Full stops

In open NLI datasets as well as Taskbase datasets, many texts had inconsistent
or missing punctuation. This was especially the case with massive or machine-
constructed datasets (such as MNLI, where premises were taken from crawled
texts and hypotheses were crowdsourced), and texts for tasks which could be
answered in keyword form. Various keyword and full-sentence texts were tried
with and without full stops at the end, which showed that some clearly en-
tailing pairs were misclassified when a full stop was not present. This finding
prompted a larger-scale experiment over several whole datasets where full stops
were synthetically added or removed.

5.3.1 Hypothesis

The goal of this experiment is to discover whether full stops at the end of
sentences affect model performance.

Hy Adding full stops at the end of sentences produces no change in performance
compared to texts with no full stops.

H, Adding full stops at the end of sentences increases performance compared
to texts with no full stops.

H_ Adding full stops at the end of sentences decreases performance compared
to texts with no full stops.
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5.3.2 Data collection

Taskbase’s and open datasets were used: Taskbase SimpleK, Taskbase Buyer-
Seller, Taskbase Evil Regular EN, Taskbase Evil Regular DE, Taskbase
Evil Hard, SNLI,MNLI combined validation, XNLI, and XNLI Shuffled. Each
dataset was then processed by a “full-stopifier”, which ensured the presence or
absence of a full-stop at the end of each premise p or hypothesis h (or both).
For each dataset, 4 variations were produced: without full stops on both p and
h (the null variation), full stops on p only, full stops on h only, and full stops
on both p and h.

5.3.3 Method

Models used were AT-mT5, RoBERTa, ML mDeBERTa, RoBERTa LXA, and RoBERTa
LX. The highest-likelihood prediction was recorded. Each variation of each
dataset was tested on all models, for a total of 180 runs. All models imple-
ment 3-way entailment; results were condensed to 2-way entailment for analysis.
Descriptive statistics, precision, recall, and F} scores were recorded assuming
2-way NLI.

5.3.4 Results

Table 22 on page 120 shows statistics for each model, dataset, and variation.
Table 25 on page 140 shows the p-values.

Significance was calculated on all statistics except F; scores by means of
a Z-test using the SEM of a Bernoulli distribution. Dataset sizes were large
enough (hundreds to tens of thousands of examples) that a Z-test was sufficient
over the binomial test of significance.

Table 10 on the next page shows the complete descriptive statistics. Ex-

trema of effect sizes are large, ranging from -59.25% to 83.33%. The most
dramatic effect sizes seem isolated to the ML mDeBERTa model. Effect sizes us-
ing other models generally range from fractions of a percent to a few percent,
with an occasional effect size of up to £9.5%. Most effect sizes range from -
4.67% to +6.94% over the null variation. Both mean and median effect sizes for
all statistics are mild.

5.3.5 Discussion

Certain patterns are visible in the results.

Precision-recall tradeoff First, many cases display a tradeoff between pre-
cision and recall. In most of these, full-stopping the hypothesis or both texts
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count+  count- mean min 10% 50% 90% max

Accuracy 24 23 -0.0028 -0.0936 -0.0380 0.0034 0.0262 0.1207
Precision E 15 30 -0.0277 -0.5926 -0.0735 -0.0116 0.0470 0.2366
Recall E 44 10 0.0733 -0.2093 -0.0659  0.0345 0.1383 0.8333
Precision NE 38 6 0.0144 -0.0095 -0.0025 0.0079 0.0156 0.2414
Recall NE 17 43 -0.0120 -0.1149 -0.0467 -0.0085 0.0199 0.0862
Overall 138 112 0.0100 -0.5926 -0.0467 0.0042 0.0694 0.8333

Table 10: Descriptive statistics of significant effect sizes for the full stops experiment.
Values are given as relative change of the statistic over the null variation. count+
indicates the number of times a statistic increased over all models and datasets. count-
shows the same for decreases.

leads the model to predict ENTAILMENT with greater likelihood, increasing EN-
TAILMENT recall and NOT ENTAILMENT precision but decreasing ENTAILMENT
precision and NOT ENTAILMENT recall. However, a mixed effect can be observed
in a some other instances, for example, with RoBERTa LX and the Taskbase
Evil Regular datasets, among others.

With the models AT-mT5 and ML mDeBERTa, adding full stops to hypotheses
on several challenging sentences almost universally improves ENTAILMENT recall,
i.e. entailing sentence pairs were more likely to be correctly classified when the
hypothesis had a full stop.

Accuracy When accuracy is significantly influenced, it decreases in about half
the cases and increases in the rest. There appears to be a correlation between the
direction of change in accuracy an the precision-recall tradeoff described above,
but whether it is a direct or inverse correlation depends on the model. With
the three RoBERTa models, accuracy and ENTAILMENT precision are directly
correlated, but AT-mT5 and ML mDeBERTa show an inverse correlation.

Language effect and not-understood texts RoBERTa tends towards NOT
ENTAILMENT on the Taskbase Evil Regular DE dataset when full-stopping
either or both texts, despite not being trained on German. A similar phe-
nomenon appears on the XNLI dataset. This is unsurprising, since the model
has no way of understanding non-English languages and will most likely tend
to NEUTRAL. The accuracy also increases significantly for the Taskbase Evil
Regular DE dataset (+3.2% to +6.8%) since the dataset is composed mostly
of non-entailing pairs. For all other models (which are multilingual), there is
no dramatic difference in the effect of full stops between English and German
datasets.
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RoBERTa LXA is neutral The RoBERTa LXA model is quite neutral with re-
spect to full stops. Only a few times did a statistic significantly increase over
the null variation; there were no decreases. RoBERTa LXA is unique among the
models used that it was trained on the ANLI dataset, warranting future experi-
ments with ANLI-trained models on challenging texts. While RoBERTa LXA was
also trained on XNLI, which could explain its affinity for non-English datasets,
RoBERTa LX was also trained on XNLI and does not display the neutral effect.

Wrapping up Overall, adding full stops has a mild positive effect, but drives
predictions slightly towards NOT ENTAILMENT. There are cases, which shall be
explored in Section 5.7, where full stops are tremendously useful.

Whether full stops have a positive or negative effect for a specific model
depends mostly on the model, somewhat on the dataset, as well as the location
of the full stop (i.e. premise, hypothesis, both).

5.4 Capitalization

In a similar vein to the full stops experiment, this experiment addresses the
inconsistent capitalization of text pairs and seeks to discover whether there is
any significantly different behaviour when the texts’ capitalization is normalized.

5.4.1 Hypothesis

The goal of this experiment is to discover whether capitalization of sentences
affects model performance. A capitalized sentence has its first letter upper-
cased; a non-capitalized sentence has its first letter lowercased but may contain
uppercased letters within.

H, Capitalizing hypothesis or premise produces no change in performance over
uncapitalized texts.

H, Capitalizing hypothesis or premise increases performance compared to un-
capitalized texts.

H_ Capitalizing hypothesis or premise decreases performance compared to un-
capitalized texts.
5.4.2 Data collection

The following datasets were used: Taskbase SimpleK, Taskbase Buyer-Seller,
Taskbase Evil Regular EN and DE, Taskbase Evil Hard, MNLI validation
combined, SNLI, XNLI, and XNLI shuffled.

From these datasets, four different capitalization variations were constructed:
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none The “none” variation has both premise and hypothesis uncapitalized.
This will be referred to as the null variation.

hypothesis The “hypothesis” variation has the hypothesis capitalized and
premise uncapitalized.

premise The “premise” variation has the hypothesis uncapitalized and premise
capitalized.

both The “both” variation has both texts capitalized.

5.4.3 Method

Models used were AT-mT5, RoBERTa, ML mDeBERTa, RoBERTa LXA, and RoBERTa
LX. The highest-likelihood prediction was recorded. Each variation of each
dataset was tested on all models, for a total of 180 runs. All models imple-
ment 3-way entailment; results were condensed to 2-way entailment for analysis.

Descriptive statistics, precision, recall, and F} scores were recorded assuming
2-way NLI.

5.4.4 Results

Table 24 on page 133 shows statistics for each model, dataset, and variation.
Table 25 on page 140 shows the p-values.

Significance was calculated on all statistics except Fj scores by means of
a Z-test using the SEM of a Bernoulli distribution. Dataset sizes were large
enough (hundreds to tens of thousands of examples) that a Z-test was sufficient
over the binomial test of significance.

Table 11 on the following page shows the complete descriptive statistics.

Effect sizes are small, ranging from fractions of a percent to a couple percent
for large datasets. Effect sizes are more pronounced for the SimpleK dataset,
to which RoBERTa and ML mDeBERTa are rather sensitive, but for a large part,
effect sizes are very mild over the null variation. Most effect sizes range from
—4.56% to 2.27%.

The mean and median effect sizes were both negative. There are also
90 instances of a statistic significantly decreasing, compared to 63 increasing.
Conversely, ENTAILMENT recall and NOT ENTAILMENT precision both had more
positive effects than negative effects, suggesting that there is a bias towards
ENTAILMENTby capitalizing texts.

5.4.5 Discussion

From these results, a few patterns are visible.
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count+  count- mean min 10% 50% 90% max

Accuracy 13 24 -0.0109 -0.1253 -0.0239 -0.0054 0.0059 0.0578
Precision E 4 21 -0.0515 -0.2705 -0.1793 -0.0344 0.0124 0.1719
Recall E 22 9 0.0230 -0.0551 -0.0232 0.0062 0.0952 0.2069
Precision NE 13 7 0.0191 -0.0026 -0.0018 0.0014 0.0708 0.2000
Recall NE 11 29 -0.0142 -0.1325 -0.0277 -0.0051 0.0063 0.0090
Overall 63 90 -0.0076 -0.2705 -0.0456 -0.0032 0.0227 0.2069

Table 11: Descriptive statistics of significant effect sizes for the full stops experiment.
Values are given as relative change of the statistic over the null variation. count+
indicates the number of times a statistic increased over all models and datasets. count-
shows the same for decreases.

Precision-recall tradeoff Like the “full stops” experiment, there is a
precision-recall tradeoff when capitalizing texts. Overall, capitalization tends
to harm accuracy, ENTAILMENT precision, and NOT ENTAILMENT recall; while
increasing ENTAILMENT recall and NOT ENTAILMENT precision. The trade-off is
most pronounced on the Taskbase Evil Regular datasets.

Roberta LXA appears to be the least sensitive to capitalization, with only
14 significant changes compared to the null variation.

The tradeoff indicates that capitalization tends to bias predictions towards
ENTAILMENT, with a few exceptions: the RoBERTa LX model did better on the
XNLI Shuffled dataset when capitalizing the hypothesis; ML. mDeBERTa displays
opposite trade-offs on both Taskbase Evil and SimpleK datasets, and AT-mT5
displays opposite trade-offs on Taskbase Evil Regular EN and DE datasets
when capitalizing the hypothesis. The latter case may be evidence of a language
effect in AT-mT5,

Language Effect A property of the German language is that all nouns are
capitalized. Recall that the null variation consists of texts which are not cap-
italized. When a noun appears at the beginning of the premise or hypothesis,
it would be correctly capitalized, possible appearing as more correct to the NLI
model, increasing accuracy. AT-mT5 is the only model that displays this kind
of effect, with better performance on Taskbase Evil Regular DE when capi-
talizing the hypothesis, while the English version of the dataset displayed worse
performance.

Wrapping up Whether Hj holds or not depends somewhat on the model, and
highly on the nature of the dataset and which of the two texts is capitalized.
Overall, capitalizing either the premise or hypothesis texts leads to reduced
accuracy and a significant shift towards ENTAILMENT in predictions.
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5.5 Bidirectional entailment

Bidirectional entailment is a technique where entailment between the NLI premise
p and hypothesis h is inferred in both directions, i.e. whether p entails/is com-

patible with/contradicts h and vice versa. The result of (3-way) bidirectional

entailment is a pair of outcomes:

NLIpig; — {ENTAILMENT, NEUTRAL, CONTRADICTION }?

where the first element of the tuple is the outcome in the forward direction
(i.e. does p entil h?) and the second element is the outcome in the backward
direction (i.e. does h entail p?).

Bidirectional entailment can be useful to determine equivalence of two
statements. If p and h both contain the same knowledge, they will entail in
both directions. Call this relation A < B, where AF BAB F A. In the context
of a digital learning platform, a student response being equivalent to a task
hypothesis is a stronger condition than entailment. Equivalence can be a useful
tool for filtering responses that contain out-of-hypothesis incorrect knowledge,
or possibly for enforcing a certain vocabulary.

5.5.1 Hypothesis

The goal of this experiment is to qualitatively determine whether bidirectional
entailment is a good tool for testing equality of a premise and hypothesis.
This is a qualitative and explorative experiment; there is no hypothesis.

5.5.2 Data collection

Taskbase’s and open datasets were used: Taskbase SimpleK, Taskbase Buyer-
Seller, Taskbase Evil Regular EN, Taskbase Evil Regular DE, Taskbase
Evil Hard, SNLI, MNLI combined validation, XNLI, and XNLI Shuffled.

5.5.3 Method

5 NLI models were used: AT-MT5, RoBERTa, ML mDeBERTa, RoBERTa LXA, and
RoBERTa LX. For each model, dataset, and example, bidirectional entailment was
performed on (p, h) to get predictions in the forward and backward directions.
Results were examined by hand to find failure cases.

5.5.4 Results

Table 12 on the next page summarizes conditional probabilities of backward

direction predictions given a forward direction prediction (e.g. P(backward =
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E | forward = N) over the 5 models used. Table 13 on the following page shows

the same, only grouped by each dataset.
Table 26 on page 146 summarizes these probabilities over all models and
datasets.

P(EIF)  P(N|F)  P(C|F)

Model
0.2349 0.7029 0.0622
AT-mT5 0.0761 0.7690 0.1549
0.0225 0.3723 0.6053
0.2340 0.6135 0.1526
RoBERTa 0.1386 0.6603 0.2011

0.0752 0.3267 0.5980
0.2981 0.6190 0.0829
0.0924 0.7938 0.1137

0.0390 0.3324 0.6286
0.3324 0.5772  0.0905
0.2054 0.6698 0.1248

0.0795 0.3083 0.6122
0.3030 0.6282 0.0687
0.1568 0.6983 0.1449

0.0432 0.3438 0.6130

ML mDeBERTa

RoBERTa LXA

RoBERTa LX

QzdOaoazgaoazdgaoaz"gaQz=|H

Table 12: Summary of probabilities of backward entailment predictions, grouped by model.
F represents the prediction in the forward direction (E = ENTAILMENT, N = NEUTRAL, C =
CONTRADICTION). P(X|F) represents the probability of prediction X in the backward direction
given the forward prediction F'. Bold values are “interesting” cases.

5.5.5 Discussion

There are 9 combinations of forward-backward predictions. Of these, only 2
are interesting: forward = ENTAILMENT A backward = CONTRADICTION and
forward = CONTRADICTION A backward = ENTAILMENT. These are “interesting
cases” that this section will focus on.

A remark on notation: P(X|Y") will mean the probability of predicting X
in the backwards direction given a forward prediction of Y. For brevity, F shall
mean ENTAILMENT, N shall mean NEUTRAL, and C shall mean CONTRADICTION.

The model that is most susceptible to producing an interesting case is
RoBERTa, although this is not a fair conclusion since RoBERTa is not trained on
German, and the several multilingual datasets may artificially make the model
appear weaker. The next most “interesting” model is RoBERTa LXA, which pro-
duced P(C|E) = 0.0905 and P(E|C) = 0.0795. This is a very interesting
observation because RoBERTa LXA has been a very well-behaved model so
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P(E|F) P(N|F) P(C|F)
Dataset

0.2539 0.6211  0.1250
0.0526 0.7722 0.1751
0.0284 0.3337 0.6379
0.7092 0.2840 0.0068
0.3509 0.5614 0.0877
0.3333 0.3083 0.3583
0.2557 0.6097 0.1346
0.1041 0.7369 0.1590
0.0705 0.4094 0.5200
0.3155 0.5303 0.1542
0.1430 0.6760 0.1811
0.0888 0.3450 0.5662
0.4482 0.5317  0.0201
0.1076 0.7978 0.0946
0.0427 0.2027 0.7546
0.3681 0.6094 0.0225
0.2018 0.7213 0.0769
0.0209 0.2525 0.7266
0.1035 0.8744 0.0221

Taskbase SimpleK

Taskbase Buyer-Seller

Taskbase Evil Regular EN

Taskbase Evil Regular DE

Taskbase Evil Hard

MNLI validation combined

SNLI 0.1375 0.7608 0.1018
0.0157 0.2118 0.7726

0.2609 0.7003  0.0388

XNLI 0.1497 0.7526 0.0977

0.0263 0.3322 0.6415
0.2910 0.6668  0.0422
0.1482 0.7362 0.1156

0.0315 0.3628 0.6056

XNLI shuffled

QzObaoazgaoazogaoazgaozgozgoazgoazgoazwg | "

Table 13: Summary of probabilities of backward entailment predictions, grouped by dataset.
F represents the prediction in the forward direction (E = ENTAILMENT, N = NEUTRAL, C =
CONTRADICTION). P(X|F) represents the probability of prediction X in the backward direction
given the forward prediction F'. Bold values are “interesting” cases.

far. The datasets which give it the most trouble are the two Taskbase Evil
Regular datasets. These two datasets are challenging for all models, producing
interesting cases over 10 percent of the time, but RoBERTa LXA is the only one
that is much more likely to predict ENTAILMENT given CONTRADICTION.

A striking observation is that all models predict £|C with quite high likeli-
hood on the Taskbase Buyer-Seller dataset, between 13 and 64 percent. The
aggregate P(E|C) over all models is 33.3 percent for this dataset. There are
few contradicting examples in this dataset in the forward direction, so even a
single pathogenic example dramatically raises the fraction of interesting exam-
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ples for this group. However, these cases can be explained by non-symmetric
word associations, which shall be described later.

The vast majority of interesting cases are from the Taskbase Evil Regular
datasets, with a few examples from MNLI, XNLI, and SNLI sprinkled in between.

Figure 5 summarizes the fraction of interesting cases in the complete corpus,
grouped by model and source dataset. The most likely models to generate
interesting cases are RoBERTa and RoBERTa LXA. The most challenging datasets
are Taskbase Evil Regular DE/EN and Taskbase Buyer-Seller.

Models Datasets

Fraction interesting cases

Figure 5: Left: Fraction of interesting cases produced by each of the used NLI
models. Right: Fraction of interesting cases produced by all models for a given
dataset.

It is unclear whether the dirty nature of Taskbase Evil Regular con-
tributes to the prevalence of interesting cases.

After examining more of these interesting cases, which number 33785 and
make up 3.98% over all datasets, several failure cases were identified which
suggest that bidirectional entailment is not always suitable as a predictor of
equality.

Word choice NLI models often fixate on certain words [9, 48, 54] that dis-
proportionately affect the prediction. In the Taskbase Buyer-Seller dataset,
this is evident in these examples:

e Seller bidirectionally entails sale.
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e Buyer bidirectionally entails purchase.
e Sale bidirectionally contradicts purchase.

This has unwanted and often surprising effects when these words are com-
bined. Looking at the Taskbase Buyer-Seller dataset, there are predictions
which are ENTAILMENT in one direction and CONTRADICTION in the other di-
rection; however, of these examples, CONTRADICTION in the forward direction is
much more common. The following examples falsely produce CONTRADICTION
forwards and correctly ENTAILMENT backwards:

p: The seller is obliged to hand over the object of sale to the

buyer.
(T5.1)
h: The seller must hand over the object of purchase.
(AT-mT5)
p: The buyer has the obligation to pay the purchase price.
h: The buyer must pay the seller. (T5.2)

(RoBERTa)

p: The buyer must pay for the goods purchased.

h: The buyer must pay the seller. (T5.3)
(ML mDeBERTa)

p: The buyer has the obligation to pay the agreed price.

h: The buyer must pay the seller. (T5.4)
(RoBERTa LXA)

These examples have one thing in common: the premise and hypothesis
each contain seemingly-contradicting words such as “buyer”/“seller” or “pur-
chase/sale” that actually entail in context. Of course, whether these words
entail or contradict each other depends greatly on the model (Table 14).

Surprisingly, RoBERTa LX is the only model that does not show this be-
haviour on the Buyer-Seller dataset, although it does make a mistake on one
example, correctly predicting CONTRADICTION forwards but falsely predicting
ENTAILMENT backwards on this pair:

p: The seller can pay, the buyer can provide the goods.

h: The seller must hand over the object of purchase. (T5.5)
(RoBERTa LX)
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If the texts contain contradicting words, why is the entailment relation
between them non-symmetric? This is difficult to explain without diving deep
into the guts of the models and directly observing their attention, which is
beyond the scope of this work. However, some hypotheses can be drawn:

Incomplete/incorrect associations NLI models may have learned incom-
plete, incorrect, or asymmetric word associations. The “purchase/sale”
association is one example of an incomplete association — the associa-
tion is correct when the word stands on its own, but incorrect in certain
contexts. Even the simple pair

: I purchased a car
peop (T 5.6)
h: Someone sold me a car.

bidirectionally contradicts. If an NLI model never learned the knowledge
that for every purchase there must be a sale (or for every buyer there must
be a seller, etc.), other features in the pair will muddle the prediction.
AT-mT5 never learns this context, but RoBERTa LXA partially learns it, in
that Text T 5.6 is NEUTRAL forwards but ENTAILMENT backwards.

Table 14 on page 56 lists some bidirectional examples on words like pur-
chase and sale.

Incorrect associations are ones where the true relationship between words
is not fully captured. For example, AT-mT5 and RoBERTa LXA incorrectly
capture the relationship between never and rarely — these texts entail for-
wards (incorrect) and contradict backwards (correct). So, many examples
containing these two words, such as

p: You never call
(T5.7)
h: You rarely call

will be an interesting case.

So, NLI can fail on words which contradict on their own, suggesting that
NLI models are biased by the meaning of individual words in a text as well
as the context of the sentence, and that sentence contexts are not always
learned. This example was illustrated in the Buyer-Seller example in the
form of a transaction (i.e. “The receiving party gets something and the
giving party provides something”), but this could apply to other examples
containing contradictory words as well (e.g. “A person leaves one places
and enters another).
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Short texts lack features Very often an interesting case will be one with
keywords or sentence fragments that are unrelated. Since there is not a lot
of information or extractable features in short texts, an NLI model might
not be able to reach a solid conclusion but will spit out some prediction
anyway. This is acutely evident in the Taskbase Evil Regular EN and
DE datasets, where the majority of responses and hypotheses are sentence
fragments. Here are 3:

p: political frictions
h: Cold War (T5.8)
(Forward: CONTRADICTION, backward: ENTAILMENT)

p: no freedom of choice

h: Capital letters (title / beginning of line) (T5.9)
(Forward: ENTAILMENT, backward: CONTRADICTION)

p: hexe

h: Lehrhaft, belehrend (T5.10)
(Forward: ENTAILMENT, backward: CONTRADICTION )

Superlatives, subsets, and senses Does “excellent” entail “good”? What
is excellent must at least be good, but what is good isn’t necessarily excellent.
In fact, one might make the argument that something which is only good can
never be excellent, otherwise the thing would be called excellent in the first
place.

To exaggerate even more: does “the best” entail “good“? If so, we get into
uncomfortable territory — if a superlative entails a similar but lesser adjective,
would “never” justifiably entail “rarely” as above? Would “You always call”
entail “You sometimes call”?

If we ask AT-mT5 or RoBERTa LXA, we find that the answer is “it depends”.
When presented with this text pair:

p: His grades are brilliant.
(T 5.11)
h: His grades are good.
both models predict ENTAILMENT in the forward direction but CONTRADICTION
in the backward one. But with this one:
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Model Premise  Hypothesis Forward Backward

Buyer Seller C C

Buyer Purchase E E

AT-mT5 Buyer Sale C C
Seller Purchase (@] C

Seller Sale E E

Buyer Seller E C

Buyer Purchase E E

RoBERTa Buyer Sale E E
Seller Purchase E E

Seller Sale E E

Buyer Seller C C

Buyer Purchase E E

ML mDeBERTa  Buyer Sale C C
Seller Purchase C C

Seller Sale E E

Buyer Seller C C

Buyer Purchase E E

RoBERTa LXA  Buyer Sale E C
Seller Purchase E E

Seller Sale E E

Buyer Seller C C

Buyer Purchase E E

RoBERTa LX Buyer Sale E E
Seller Purchase E E

E E

Seller Sale

Table 14: Bidirectional entailment on several models for the words “Buyer”, “Seller”, “Pur-
chase”, “Sale”. Forward is the prediction when entailing the premise against the hypothesis.
Backward is the prediction when entailing the hypothesis against the premise. F represents
entailment. C represents contradiction.
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p: You always call. (T5.12)
h: You sometimes call.

both directions are CONTRADICTION. Things get messier with this pair:

p: You always call me on Mondays.
(T5.13)
h: You often call me on Mondays.
This one is ENTAILMENT in the forward direction but NEUTRAL backwards, even
though it could be argued that “always” contradicts “often” because “often”
implies that there are mondays when you don’t call me.
Another example:

p: Kinder
(T5.14)
h: Nachkommen
: Child
br dren (T5.15)

h: Descendants

AT-mT5 seems convinced that the forward direction is ENTAILMENT but the
backward direction is CONTRADICTION (although it seems to have no issue with
“grandchildren”). It is possible that the model is confusing the word sense
of “children”, since the word may mean in its context either a descendant, or
what we would call a young human who loves to play. Indeed, a quick search
through MultiNLI reveals that it overwhelmingly refer to “children” as the latter
definition, and seldom in the context of family or as descendants.

It is also possible that the model does not understand the concept of subsets.
A child is certainly someone’s descendant, but a descendant is not necessarily a
youngster. The strong association of “children” to “youngster” may overwhelm
the weaker association between “descendant” and “child”, hence the asymmetric
ENTAILMENT-CONTRADICTION relation.

Too Much Information Bidirectional entailment is useful to address what
we shall call the Too Much Information (TMI) problem, where a student
can receive a passing grade despite there being false or confounding knowledge
in the response. This tends to happen when hypotheses are too vague, but can
occur even with well-constructed ones. Extra knowledge in the premise may
(a) confuse the NLI model and cause it to output a wrong prediction, or (b) be
incorrect entirely. Let us see how we can confuse an NLI model. Consider the
following task:

Task: How would you describe Ronaldo’s back yard? (T5.16)

h: Grassy
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This hypothesis will tend to follow from many responses that contain the word
“grassy”. For example, the premise

p: It is quite grassy, so he can practice football (T5.17)

entails h, but

p: It should be grassy although it’s quite dry where he lives so (T5.18)
probably not
also entails, even though it may be considered contradictory!

The risk of writing vague, or keyword-length hypotheses (as opposed to full
sentences) to open-ended tasks is that many students will write sentence-format
responses which contain confounding or false knowledge. This phenomenon can
be observed in Taskbase’s production data.

Even with well-constructed hypotheses in a full-sentence environment, a
student who mistakenly adds incorrect information to a response may still re-
ceive a passing grade. Consider this task and hypothesis:

Task: What event defined Napoleon’s life in 18129

(T5.19)
h: Napoleon invades Russia.

A student may well write:
p: Napoleon invades Russia, also known as the Soviet Union. (T 5.20)

This premise entails in the forward direction, because it completely encom-
passes the knowledge in h. However, there is supplementary information that
is incorrect.

Bidirectional entailment again comes to the rescue. By requiring that the
texts entail in both directions, it rejects student responses containing Too Much
Information. If a student does include Too Much Information, appropriate
feedback could be assigned:

It looks like you wrote more than was expected. Try including only
the information that you learned in class!

TMI and noise Too Much Information confounds the model further by in-
creasing variability of predictions. Going back to the example with Ronaldo’s
lawn, the pair

p: It should be grassy although it’s quite dry where he lives
so probably not (T5.21)
h: Grassy
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entails in the forward direction, but

p: It should be grassy but it’s quite dry where he lives so
probably not (T5.22)
h: Grassy

does not (the premises differ only in one word: although/but). Interestingly,
these two premises entail each other in both directions, suggesting that they are
equivalent.

This finding reveals two things:

First, two texts which are semantically equivalent (as judged by bidirec-
tional entailment) are not interchangeable in other contexts. It is likely that
NLI models fixate on specific words which disproportionately contribute to the
prediction. It is possible that the word “but” is more highly associated with
contradictions in the training dataset than with entailments. Indeed, similar
behaviour has been seen on open datasets [9, 48, 54].

Second, premises containing A Lot Of Information can introduce noise into
the predictor, increasing the likelihood that a long response will accidentally
produce false predictions. Responses should therefore be limited in length. Long
premises or premises with differing sentence structure from the hypothesis also
contribute to noise [85]. This phenomenon is seen in the MultiNLI, XNLI, and
ANLI datasets, which tend to have long premises and short hypotheses.

Responses that fool the model into making an incorrect prediction are ad-
versarial, and can be used to fine-tune models. Indeed, the ANLI dataset is
made up of similar premises: tricky and long texts expressly designed to con-
fuse NLI models.

Note that, normally, if a premise entails a mistake hypothesis, the response
should surely be flagged as incorrect, and appropriate feedback given to the
student. In addition to falsely predicting ENTAILMENT when premises contain
confounding information, another concern with TMI is that a response may
falsely entail a mistake hypothesis, which would return feedback to the student
that is not relevant.

5.5.6 Wrapping up

Bidirectional entailment can be a tool to determine semantic equality between
two texts, but it is often fragile. Using bidirectional entailment doubles the
chance of a misclassification.

It was discovered that entailment is not a transitive relation. A= BAB E C
does not necessarily indicate that A F C. In fact, even A < B does not imply
that both A and B entail with C.
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Depending on the training data, a model may learn a subset of senses for
a given word, causing a misclassification if the NLI pair refers to a weakly-
learned sense. For instance “child” might strongly associate with “youngster”
but weakly with “descendant”.

Bidirectional entailment can identify premises with Too Much Information,
which is useful for filtering out student responses that contain more information
that is present in the hypothesis. This approach, however, is fragile, and fails
when the texts contains certain words or when the texts are complex.

Overall, it would help to construct an NLI dataset with labels in both
directions so that the backward entailment direction can be better characterized.

5.6 The Homer Simpson Paradox

As alluded to in a few of the above experiments, NLI models may sometimes ig-
nore certain words or base their predictions disproportionately based on certain
features in either of (p, h). An interesting NLI example discovered at Taskbase
deals with NLI models entirely ignoring parts of sentences:

p: Lisa works at a nuclear power plant and eats a sandwich
with Homer Simpson. (T5.23)

h: Homer Simpson works at a nuclear power plant.

This pair, unfortunately produces an ENTAILMENT prediction on AT-mT5.

Let us call this phenomenon, where a model falsely predicts ENTAILMENT
due to ignoring parts of sentences or the entire sentence structure, the Homer
Simpson Paradox.

We have seen in the bidirectional entailment experiment that the presence
of certain words influence the outcome of the prediction, but are there fragments
of texts that don’t? The goal of this experiment is to determine whether NLI
models prefer to focus on specific classes of words (i.e. nouns vs. verbs vs.
adjectives, etc.) and ignore others.

5.6.1 Hypothesis

This is a qualitative and explorative experiment; there is no hypothesis.

5.6.2 Data collection

The dataset used was Taskbase Homer. This dataset was constructed through-
out this experiment and modified with adversarial examples designed to test a
model’s affinity to certain parts of speech.

NLI models used were AT-mT5, RoBERTa, M. mDeBERTa, RoBERTa LXA, RoBERTa

LX.
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5.6.3 Method

Every example in the Taskbase Homer dataset was run on all of the NLI mod-
els. There was no quantitative analysis done. Patterns in the predictions were
examined and further tested by hand. When an interesting pattern arose, more
examples were constructed and appended to the Taskbase Homer dataset.

5.6.4 Discussion
Several variations on the premise in Text T 5.23 also produce ENTAILMENT:

p1: Homer Simpson parachutes at a nuclear power plant.®

p2: Homer Simpson eats a sandwich at a nuclear power

plant.
(T5.24)

p3: Homer Simpson is a parachuter at a nuclear power plant.

pg: Homer Simpson fdgfungehfisf at a nuclear power plant.

aPerhaps he is aiming into the cooling towers?

A pattern emerges here: AT-mT5 apparently completely disregards the verb
attached to the subject, Homer Simpson. Despite writing gibberish or contra-
dicting information into the premise, the model always returns ENTAILMENT.
It presumably focuses primarily on the nouns: “Homer Simpson” and “nuclear
power plant” are always present, which biases the prediction towards ENTAIL-
MENT.

The remaining NLI models exhibit similar behaviour, but not as severely.
Table 15 on the following page shows the predictions of each model. AT-mT5
misclassified 5 times of 5, RoBERTa 3 times, ML mDeBERTa 3 times, RoBERTa LXA
2 times, and RoBERTa LX 3 times. RoBERTa LXA is the best performer except for
the two examples containing “Homer Simpson is a __ ", which, interestingly,

all models got wrong.

There are apparently parts of sentences that are not considered by NLI
models, in this case, verbs and objects of “is”. AT-mT5 is particularly bad
at detecting not-entailments with substituted words, as it misclassified every
example. Overall, it appears that the major deciding factor is matching “Homer
Simpson” and “nuclear power plant”. Predictably, these premises correctly
produce CONTRADICTION using all five models:

p: Lisa Simpson works at a nuclear power plant.
p: Homer Simpson works at a solar power plant.
p: Lisa Simpson works at a solar power plant. (T5.25)
p: Homer Simpson works at a house plant.
p: Lisa Simpson works at a house plant.
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Premise Prediction

Lisa works at a nuclear power plant and eats a sandwich with Homer Simp- E CCNE
son.

Homer Simpson parachutes at a nuclear power plant. EEENN
Homer Simpson eats a sandwich at a nuclear power plant ENNNN
Homer Simpson is a parachuter at a nuclear power plant. EEEEE
Homer Simpson is a fdgfwnqgehfisf at a nuclear power plant. EEEEE

Table 15: Results of entailing various premises against the hypothesis Homer
Simpson works a a nuclear power plant.. Each of the five predictions was gen-
erated by a different NLI model; in order: AT-mT5, RoBERTa, ML mDeBERTa,
RoBERTa LXA, RoBERTa LX. E = ENTAILMENT, N = NEUTRAL, C = CONTRA-
DICTION.

These premises show that the NLI models do recognize verb subjects and prepo-
sitional objects (albeit, with strings attached, as is seen in the next example).

Giraffes The next trial was run with
h: Giraffes eat leaves that grow on trees. (T5.26)

Premises were constructed as follows: for each noun and verb in the hypothesis,
the word was replaced with (a) a word that preserves semantic correctness, (b)
a nonsensical word in the same part of speech, and (c) gibberish. The results
of the inference on all models is shown in Table 16 on the next page. The

total number of misclassifications using these giraffe-based examples were: 5
for AT-mT5, 7 for RoBERTa, 5 for ML mDeBERTa, 3 for RoBERTa LXA, and 8 for
RoBERTa LX.

The models continue to do somewhat well in recognizing verb subjects
(except for RoBERTa and RoBERTa LX, which often are the worst performers
throughout this work’s experiments), and verb objects. A reversal over the
Homer Simpson examples is seen for verbs — when it comes to giraffes, verb
substitutions are caught. However, when all elements except the verb subject
are substituted with gibberish, misclassifications arise. The overall best per-
former, RoBERTa LXA is also confused by the verb in the adjective phrase, along
with nearly every other model except AT-mT5 and ML mDeBERTa, which correctly
recognize “leaves that fall on trees” as a contradiction.

Again, RoBERTa LXA is the best performing model, being robust to gibberish
and substitutions in all but the verb in the adjective phrase (i.e. “that ___ on
trees.).
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Premise Predictions

Rhinos eat leaves that grow on trees. CCCCE
Specimens eat leaves that grow on trees. NECNN
foobarbaz eat leaves that grow on trees. CCCCE
Giraffes admire leaves that grow on trees. CCNCN
Giraffes write leaves that grow on trees. ccccce
Giraffes iurehe leaves that grow on trees. EEECE
Giraffes eat twigs that grow on trees. ccccce
Giraffes eat empathies that grow on trees. ccccce
Giraffes eat qwfhkmko that grow on trees. EECCN
Giraffes eat leaves that fall on trees. CECEE
Giraffes eat leaves that think on trees. EEEEE
Giraffes eat leaves that rwmxkjthu on trees. EEEEE
Giraffes eat leaves that grow on shrubs. CCECE
Giraffes eat leaves that grow on ideas. CCCCN
Giraffes eat leaves that grow on nvjoiej. EEECE

Table 16: Results of entailing various premises against the hypothesis Giraffes
eat leaves that grow on trees.. Fach of the five predictions was generated by a
different NLI model; in order: AT-mT5, RoBERTa, ML mDeBERTa, RoBERTa LXA,
RoBERTa LX. E = ENTAILMENT, N = NEUTRAL, C = CONTRADICTION.

Usain Bolt Usain Bolt is the fastest sprinter in the world at the 100 and 200
metre sprints [148]. Some language models, however, appear unaware of this
marvelous achievement, as shown in Table 17.

Surprisingly, the only model that correctly predicted the first four examples
as not-entailment was RoBERTa, often the weakest model of the five! All others
are woefully bad at recognizing that sloths, tortoises, and snails are slow animals.
The trend persists if the premises are re-formatted to “Usain Bolt runs like a
(animal)”’, with even RoBERTa starting to fail on not-entailment examples.

These examples could be considered figurative or metaphoric language,
which have been studied in the context of NLI [1, 2, 130]. The conclusions
of these papers are that there is a lack of metaphoric language in existing NLI
datasets, and that NLI models are not good at identifying not-entailments in
the presence of figurative language, which is what is reflected here.

Concluding that a misbehaving model or (p,h) exhibits the Homer Simpson
Paradox must be done with restraint. Even though these examples relating to
Usain Bolt have adjective phrases as in the Giraffe example, and it appears
that they are ignored, asking each model whether a snail, sloth, or tortoise are
slow animals yields NEUTRAL. The exception is RoOBERTa, which is still very
particular about how it is asked:
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Premise Hypothesis Predictions

Usain Bolt runs at the speed of a sloth. Usain Bolt runs quickly E CEEE
Usain Bolt runs at the speed of a tortoise. Usain Bolt runs quickly E CEEE
Usain Bolt runs at the speed of a snail. Usain Bolt runs quickly E CEEE
Usain Bolt runs at the speed of a cheetah. Usain Bolt runs slowly ccccce
Usain Bolt runs at the speed of a cheetah. Usain Bolt runs quickly E EEEE
Usain Bolt runs like a sloth. Usain Bolt runs quickly E CEEE
Usain Bolt runs like a tortoise. Usain Bolt runs quickly E EEE E
Usain Bolt runs like a snail. Usain Bolt runs quickly E EEEE
Usain Bolt runs like a cheetah. Usain Bolt runs slowly CCNCC
Usain Bolt runs like a cheetah. Usain Bolt runs quickly E EEEE

Table 17: Results of entailing various Usain Bolt-related premises and hypoth-
esis. Each of the five predictions was generated by a different NLI model; in
order: AT-mT5, RoBERTa, ML mDeBERTa, RoBERTa LXA, RoBERTa LX. E = EN-
TAILMENT, N = NEUTRAL, C = CONTRADICTION.

h: A slow animal.
p: A Snail.
p: A Tortoise.
p: A Sloth.

(T'5.27)

All of these examples produce ENTAILMENT on RoBERTa. Yes, the capitalization
and full stops are important, otherwise the model will sometimes be undecided
and predict NEUTRAL (as seen previously with full stops and keywords). So,
even if models encode the knowledge that snails, tortoises, and sloths are slow,
they might not call upon that knowledge when necessary.

From Table 17, the fact that the first three examples are mostly misclassi-
fied but the last example is correctly classified in all models may suggest that
there is a strong entailing, association between “quickly” and “speed”, and a
corresponding contradicting association between “slowly” and “speed”. This
could be an explanation of the Homer Simpson Paradox: some parts of the
texts weigh more on the final prediction than others, suggesting that the latter
parts are ignored.

It is possible that the Homer Simpson Paradox goes hand in hand with im-
perfect word associations in some cases, but this cannot be known for sure unless
the attention values are examined directly during the invocation of a model on a
particular (p, h) pair. This may be a future direction to quantitatively identify
patterns in attention between tokens of the premise and hypothesis.

Why models ignore words There are several plausible reasons why an NLI
model may choose to disregard certain words:
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e NLI datasets generally contain very short hypotheses, and long premises.
The model might learn that certain parts of the sentence are irrelevant or
not covered by most hypotheses, and ignore them entirely. This may be
the case with non-essential qualifiers or phrases like “that grow on trees”
which hypotheses are unlikely to contain. Hypotheses, however, will surely
vary in subjects, objects, and verbs, but more research is necessary to
confirm this.

e Human annotators might disproportionately create not-entailing hypothe-
ses by substituting a certain class of words (e.g. the verb subject), there-
fore the model learns to be more sensitive to substitutions on those words.

e Artefacts in either the premise or hypothesis may bias the prediction in
one or the other direction [9, 48].

e Models disproportionately place greater attention on certain correlated
word-pairs, such as “speed” and “quickly”, driving the prediction in one
or the other direction.

e Models are missing certain word associations, or those associations are not
strong enough.

5.6.5 Wrapping up

This experiment explored the Homer Simpson Paradox very shallowly. It did
not provide good evidence about which words the model ignores or why, but it
suggests a direction for future exploration.

Manually creating a dataset to satisfy the burden of proving the Homer
Simpson Paradox would be challenging. Instead, is possible to mutate existing
datasets such as MultiNLI by parsing entailing premises and substituting the
leaves or even branches of the parse tree with words/texts of the same type.
The overwhelmingly likely consequence of such a substitution is that it would
invalidate the entailment. By looking at which substitutions produced the most
ENTAILMENT predictions, it would be possible to see which parts of sentences
are most likely to be ignored. Hypernym/hyponym and antonym substitution
has been somewhat studied by Carmona, Mitchell, and Riedel [23].

5.7 Entailing keywords

Much of the Taskbase NLI corpus is made up of keywords or sentence fragments.
The Taskbase SimpleK dataset is composed of keywords in the premise and
hypothesis. Instructors may want to write tasks with keyword-like hypotheses
to match as many correct responses as possible, for example:
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Task: What have you learned about lightning?
' h: electritl:ity. (T5.28)
p1: It is an electric discharge.

po: Lightning is basically electricity.

How does entailment behave on keyword hypotheses? To discover this, an
automated process was devised that extracts noun chunks from premises and
tries to infer entailment between the sentence and noun chunks.

5.7.1 Hypothesis

Hjy: Sentences will entail noun chunks only by 50-50 chance.
H;: Sentences will entail noun chunks taken from the sentence and not entail

noun chunks from other sentences.

5.7.2 Data collection

The premises used were collected from Taskbase data sets and SNLI:

Giraffes eat mostly twigs, and sometimes shrubs, grass, and fruit.
The merchant must hand over the object of sale.
The buyer is obligated to pay the merchant for the object of sale.
Whenever I return home, I give a treat to my dog.
Homer Simpson works at a nuclear power plant and eats ham
sandwiches with his daughter, Lisa.
The sailor from South Africa lives happily with his wife in the
house Jack built.

All living organisms are composed of cells, and are called
unicellular when they are composed of a single cell or multicellular,
when they have more than one cell.

A man inspects the uniform of a figure in some East Asian country.
A black race car starts up in front of a crowd of people.

A smiling costumed woman is holding an umbrella.

5.7.3 Method

The AT-mT5 model was chosen for this experiment since it gives all-around good
results.

Noun chunks were extracted from each sentence. First, stop words were
removed from the sentence to remove short articles and pronouns, then noun
chunks were extracted using the spaCy library.

In the first trial, pairs were constructed taking a sentence as the premise,
and a noun chunk from that sentence as a hypothesis. All combinations of
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sentences and in-sentence noun chunks were considered. In the second trial, the
hypotheses were noun chunks from different sentences. All pairs from the first
trial were expected to entail; all pairs from the second trial were expected to
contradict.

p-values were calculated using the Z-test.

5.7.4 Results

First trial In the first trial, extracted noun chunks were used verbatim in
hypotheses. Some examples from this corpus:

p: Whenever I return home, I give a treat to my dog.

(T5.29)
h: dog

: A black race car starts up in front of a crowd of people.
p p in fi f f peop (T'5.30)

h: black race car

Sample size was 36.

Pairs in the first trial should all entail. Inferring entailment on AT-mT5
yielded an accuracy and ENTAILMENT recall of 0.540. That is, predictions were
only insignificantly better than chance (p = 0.3133). However, when each hy-
pothesis was given a full-stop, accuracy and ENTAILMENT recall were 0.945,
which is significantly above chance (p ~ 4 x 107%).

The only two failures in this corpus were:

p: Giraffes eat mostly twigs, and sometimes shrubs, grass,

d fruit.
and frui (T5.31)

h: grass.
NEUTRAL

p: All living organisms are composed of cells, and are called
unicellular when they are composed of a single cell or
multicellular, when they have more than one cell. (T5.32)

h: single cell.
CONTRADICTION

The second failure is excusable; The first is an error.

67



Second trial In the second trial, noun chunks from different sentences were
used as hypotheses. All combinations of sentences and out-of-sentence noun
chunks were considered. Hypotheses were tested with full stops and without.

Sample size was 303.

Without full stops, accuracy and NOT ENTAILMENT recall were 0.9461,
which is significantly over chance (p ~ 1.08 x 1075%).

With full stops, accuracy and NOT ENTAILMENT recall were 0.9339, which
is significant over chance (p ~ 7.43 x 10752).

5.7.5 Discussion

AT-mT5 clearly recognize noun phrases contained within premises. The flexible
nature of NLI means that noun phrases may be worded slightly differently, e.g.
using different adjectives, and still be entailed. However, this requires that the
hypothesis containing the noun phrase have a full stop.

Punctuation The fact that full stops on the hypotheses improves ENTAIL-
MENT recall is interesting. Perhaps the model considers the full stop as a feature
that indicates “this is a sentence”. When the premise is also a sentence these
features must match in order to predict ENTAILMENT.

Accuracy is slightly lower when full stops are added, which makes sense
with AT-mT5. As seen in the full stops experiment (Section 10 on page 45, this
model tends towards ENTAILMENT when full stops are added to the hypothesis,
therefore decreasing NOT ENTAILMENT recall.

Second trial A pattern is seen in the second trial. All of the noun chunks
which were entailed by unrelated sentences were very generic, such as object,
man, people, figure. There were also others that matched in a narrower context,
for example, costume entailed uniform. Interestingly, the word treat as entailed
by three unrelated sentences, raising the question of how the model (mis-)learned
the meaning of that word.

There are small difference between the with-full-stops and without-full-
stops corpus. The hypothesis treat is only inferred with full stops, but the
hypothesis sale is entailed by the sailor sentence (a coincidence, or perhaps a
pronunciation/spelling error in the training datasets?). However, the difference
is not statistically significant (p = 0.1764).

Wrapping up The AT-mT5 model appears to not entail keyword hypotheses

very well unless the hypotheses have full stops. Trying to capitalize the hypothe-
ses did not produce any meaningful change. Interestingly, Table 22 shows that
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AT-mT5 on the Taskbase SimpleK dataset has no significant change in ENTAIL-
MENT recall and a decline in accuracy when the hypothesis terminates with a
full stop, so perhaps this phenomenon only happens with full-sentence premises
and keyword hypotheses.

In the future, this experiment should be repeated on a wider range of models
and texts, to make sure that robustness to nouns is not specific to AT-mT5; as
well as with a wider selection and character of data. A dataset could also be
produced, either manually from production data, or synthetically using word
extraction, containing full-sentence premises and keyword hypotheses. It would
also be worthwhile to extract more than just nouns, to determine whether other
parts of speech, or even sentence fragments, follow this trend.

5.8 1s-a relations

What facts can language models learn? General language models can learn
information and encode it within the model’s parameters [111]. The model can
retrieve this information later and use it to answer natural language queries
without depending on additional inputs, for example in closed-book question
answering, where a model must answer questions using only knowledge it has
encountered during training.

Consider the following task that might be given to a student in primary
school: Give an example of an invertebrate. It is clearly impractical to expect
the instructor to enumerate all living invertebrates as hypotheses. Instead, the
language model should be clever enough to recognize whether a particular input
is an example of an invertebrate or not. For example, the query

p: Lobster.
(T5.33)

h: This is an example of an invertebrate.

should indicate ENTAILMENT. These kinds of relations are called hypernymy/
hyponymy, or is-a relations. Invertebrate is a hypernym of lobster because
lobsters are a kind of invertebrate.

Other kinds of relations exist. For example, an is-a-part-of relation is
called meronymy or holonymy (a meronym is part of a holonym. For example,
the query

p: A hoof.

(T5.34)
h: This is a part of a horse.

should return ENTAILMENT.

Databases such as WordNet [88] exist that manually enumerate these rela-
tions between words.
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The goal of this experiment is to recognize whether NLI models encode
hypernymy relations as entailment. Hypernymy is closely related to lexical
entailment, which is the recognition of entailment between single words.

5.8.1 Hypothesis
On recognizing hypernyms:
Hy NLI models do not recognize hypernyms and give chance predictions.

H, NLI models recognize hypernyms in the hypothesis and predict ENTAIL-
MENT.

On recognizing not-hypernyms:
Hy NLI models do not recognize not-hypernyms and give chance predictions.

H, NLI models recognize not-hypernyms in the hypothesis and predict NOT
ENTAILMENT.

5.8.2 Data collection

A list of the 2500 most common nouns in English film subtitles, except for the
first 50, was obtained from the SUBTLEXus dataset [138]. Hypernyms were
obtained from WordNet.

5.8.3 Method

Only the AT-mT5 model was used.

For each of the 2500 nouns, hypernyms were obtained from the WordNet
database. Only hypernyms that also occurred in the list of 2500 nouns and
were not part of WordNet’s most common hypernyms (e.g. “unit”, “object”,
“entity”, etc.) were retained.

Let MostCommonNouns be the set of the 2500 most common nouns, and
WordNetHypernyms(p) be the set of all hypernyms of p which also appear in
MostCommonNouns.

Own hypernyms The own hypernyms experiment is meant to determine
whether AT-mT5 correctly identifies a hypernym of a word. Premise-hypothesis
pairs were constructed like so:

pairs = []
for p in MostCommonNouns:
for h in WordNetHypernyms(p):

pairs.append((p, h))
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That is, each of the nouns was paired with all of its hypernyms also appearing
in the 2500 noun set. There were 7560 pairs in total. All entailment predictions
for these pairs are expected to be ENTAILMENT.

Other hypernyms The other hypernyms experiment is meant to determine
whether AT-mT5 correctly identifies non-hypernyms. Premise-hypothesis pairs
were constructed like so:

pairs = []
AllHypernyms = [h for p in MostCommonNouns
for h in WordNetHypernyms(p)]
for p in MostCommonNouns:
not_hypernyms = AllHypernyms — WordNetHypernyms (p)
for i in range(3):
pairs.append ((p, sample(not_hypernyms, 1)))

That is, each of the nouns was paired with 3 words that are hypernyms of
other nouns in the 2500 noun set There were 7500 pairs in total. All entailment
predictions for these pairs are expected to be NOT ENTAILMENT.

Transformations Various transformations were tried on both premise and
hypothesis:

e Punctuation: The premise or hypothesis was punctuated with a full stop
at the end.

[snebi

e Articlification: A non-capitalized indefinite article (“a” or “an”) was prepended
to the premise or hypothesis.

e Both: Both articlification and punctuation were applied.

e Template The hypothesis was embedded in a template: This is an example
of a/an ___ (a/an is chosen appropriately).

5.8.4 Results

Table 18 on the next page shows the accuracy for both the own hypernyms (top)

and other hypernyms (bottom) experiments. Maximum values are bold. Some
combinations of transformations were not evaluated.

5.8.5 Discussion

The results show that leaving the premise as-is and punctuating+articlifying
the hypothesis keyword causes AT-mT5 to detect hypernyms with the greatest
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Own hypernyms

Hypothesis transformation
None Punc. Art. Both Template

None 0.4767 0.4959 0.6001 0.6466 0.4205

Q

n g

= € Punc. 05205 0.4499 ; - 0.4691

E § Art.  0.5417 - 0.5880 ] 0.5099
“  Both  0.5608 ; - 05489  0.5708

Other hypernyms

Hypothesis transformation
None Punc. Art. Both Template

None 0.9270 0.8880 0.8462  0.8637 0.9564

o

% &

é %  Punc. 0.8895 0.9092 - - 0.9391

E g Art. 0.8907 - 0.8590 - 0.9408
*  Both 0.8770 - - 0.8717 0.9108

Table 18: Accuracy of predictions for both own hypernym and other hypernym
experiments. Transformations of the hypothesis text are shown across columns.
Transformations of the premise text are shown across rows.

likelihood, at 64.66% (p =~ 0 over chance). Some transformations, such as
templating the hypothesis and leaving the premise untouched, actually have the
opposite of the intended effect. Overall, it seems that articlifying the premise
and/or hypothesis has a positive effect on recalling entailment of hypernyms.

The own hypernyms experiment might be misleading because hypernyms
returned by WordNet are low-quality with respect to colloquial use of English.
This will be explored more below. In short, many hypernyms to some word
w from WordNet have a very shaky semantic relationship to w. For example,
WordNet indicates that two hypernyms to the word “heart” are “impression”
and “belief”, which clearly hold no direct relation to “heart” but occur due
to artefacts in WordNet’s very detailed and tree-structured database. It is
suspected that NLI models actually know colloquial hypernym relations better
than this experiment indicates — this can be tested by developing a database
of words and their hypernyms as used in common English and repeating this
experiment.

In the other hypernyms experiment, the transformations with the highest
likelihood of yielding the correct entailment prediction were none on the premise
and templating on the hypothesis. Interestingly, both experiments yielded the
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highest accuracies when the premise was untouched. Due to WordNet’s too-
detailed treatment of hypernyms, it is possible that templating the hypothesis
in the own hypernyms experiment is actually the most realistic result given
everyday English and that the Both transformation leads to false entailments.
Of course, this experiment only revealed how AT-mT5 encodes hypernym
relations. Other models may have different behaviour. It would be interesting
to see whether they are more or less sensitive to some transformations and
whether they perform better on this WordNet corpus than AT-mT5.
Sometimes, hypernymy is not desired. Take the following taski:

Task: What does this picture show?

A reasonable hypothesis would be A fruit bowl in the rain or A bowl of fruit
in the rain. However, since an orange is a fruit, the premise A bowl of oranges
in the rain would entail. Here, the instructor doesn’t want to accept oranges
since there are no oranges. One way to solve this issue would be to introduce a
superhypothesis (see Section 6.2 on page 84) which has to entail the response,
to place an upper bound on the hypernymy.

WordNet is not a good tool to create common-speech hypernymy datasets
for three reasons:

e WordNet is too detailed. The word giraffe has as a hypernym artiodactyl,
even though such a comparison would probably never occur in colloquial
language, but possibly in professional language. It is possible to eliminate
such esoteric words from a dataset by filtering only such hypernyms that
occur in the top N most frequently used nouns in English. However, com-
mon but non-sensical hypernyms would still appear, as described below:

e WordNet hypernymy is strictly tree-structured, which can introduce un-
wanted transitive hypernyms that don’t make sense. Giraffe has a a tran-

36Image from https://pixabay.com/photos/grapes-apples-fruits-food-fresh-4125348
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sitive hypernym living thing (which is fair), but also unit, object, and
entity. Is a giraffe a unit? Such a question probably doesn’t make sense.
Is a giraffe an object? One would say “no”, since a giraffe is an animate
being, not some inanimate “object” as colloquial usage would imply. Un-
fortunately, filtering these transitive dependencies is difficult because it is
unclear how deep in the hypernymy tree to go. Giraffe has a fairly deep
hypernymy tree because it includes all the biological classes, clades, and
geni that giraffes are a part of. Circus (in the sense of a “circus troupe”
has a relatively shallow hypernymy tree. Thus, heuristics like “take the
first N levels” or “take the first M% of the hypernymy tree fail because of
the size variation between hypernymy trees of different words and different

senses.

e WordNet lists many different senses for nouns, which sometimes differ very
slightly. Apart from each sense having different hypernyms, it is difficult
to extract from a short text exactly which sense is meant and select the
proper sense in WordNet. This leads to the inclusion of hypernyms that
aren’t related to the actual meaning of the word in context.

In the future, this experiment can be extended by considering characteris-
tics or properties of things, instead of simple hypernymy. is-a relations are not
limited to single nouns. For example, hypernymy would not be helpful with the
following pairs but a perfect NLI model would recognize their entailment:

p: A rocking chair.

(T5.35)
h: This is living room furniture.
p: Frustration.
(T5.36)
h: An upsetting emotion.
p: A giraffe.
girefy (T5.37)
h: An animal living in the savannah.
p: Rivella
(T5.38)
h: This is a sugary drink.
: The sk
brAhe sty (T 5.39)
h: Blue
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p: Running

(T 5.40)
h: Something an athlete might do.
: Safari
p: 5o (T5.41)
h: This is an example of a place with animals.
p: The Battle of Britain. (T5.42)
h: A historical battle.
p: In Scotland.
(T5.43)

h: In Europe.

The sky is-a something blue (as colloquially understood), although since blue
is not a noun, it would not appear in a hypernymy database (though it may
appear in a general knowledge graph). The direct WordNet hypernym for sky
is atmosphere, which is probably not what is meant by the average person when
talking about the sky. A rocking chair is furniture, but it’s also living room
furniture. A bed would not be living room furniture, and this distinction, the
qualified furniture, is unlikely to appear in hypernymy databases (it does not, for
example, in WordNet). The final example is an is-part-of relation — Scotland
is a part of Europe, so while Scotland might not necessarily imply the whole of
Europe, something in Scotland does imply that the thing is also in Europe.

A future direction might be to investigate knowledge embedding using
knowledge graphs instead of the WordNet database.

7



6 Towards building a framework for entailment-
friendly tasks

This section discusses some general challenges with using NLI for digital learning
as well as general language processing. Some solutions to these challenges are
proposed, which might be directions of future research in how to adapt the NLI
task to better fit digital learning, or how to adapt digital learning tasks to be
more compatible with current NLI models.

6.1 Ambiguity in NLI

NLI is not a clear-cut task. Natural language is ambiguous®’, therefore NLI
must struggle with ambiguities as well. These ambiguities cause issues when
determining the gold label for NLI pairs, choosing one of several meanings a
sentence may have, and establishing real-world context which affects the infer-
ence process.

One of the keys to writing NLI-friendly tasks is to remove possibilities of
ambiguity right at the creation of the task. The task author must consider not
just how students might interpret ambiguous words or phrases, but how the NLI
model might interpret them.

This section will explore a few sources of ambiguity and how they may
affect the performance of NLI as a feedback assignment system.

6.1.1 Ambiguity of categories
Consider this simple but cheerfully absurd pair:

p: Humans are exploring the solar system in the rockets that
they built. (T6.1)

h: Animals have discovered rocketry.

Is this an example of entailment or not entailment? This depends on whether a
human is considered an animal, which in turn depends on who you ask. For a
evolutionary biologist, humans are clearly animals — they are in the kingdom
Animalia and share common genes and close ancestors with other animals.
But ask a sociologist, a clergyman, or an ethologist (a scientist who studies
animal behaviour), and their answer might be different: No, humans are not
animals because their intelligence and behaviours greatly differs from those of
animals. Even the average reader would probably classify this example as NOT

37The sentence “I ate a fish with a fork.” has three different meanings.
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ENTAILMENT, since raccoons zooming around on rockets is possible only in film
[47].

Even disregarding the scientific definition of a human, the question of
whether a text pair entails or does not entail depends on the context of the
task. A task in biology should be interpreted with different presuppositions
than one in arts or humanities — to say that a human is an animal in the con-
text of art history is very different compared to the context of biology. Each
subject has its own presuppositions.

6.1.2 Reasonableness of prior knowledge

Prior knowledge also affects ambiguity in NLI. Consider this example:

p: Genghis Khan conquered a lot of Asia. (T6.2)
h: The warlord conquered a lot of Asia. '

The gold label for this pair should be ENTAILMENT, although it would be
unclear for an uneducated reader, and perhaps a machine, whether Genghis
Khan is a warlord or not. Perhaps this text refers to Genghis Khan the stable-
boy, one of the Great Khan’s descendants?

What information is the NLI model allowed to know? Kalouli et al. [64] ar-
gue that, when judging the gold label for a premise-hypothesis pair, the premise
contains all the information against which the hypothesis should be judged, i.e.
the premise contains the entire worldview. With this limitation, Text T 6.2
should be annotated as NEUTRAL. Nowhere does it say that this Genghis Khan
is a warlord, even though it is very likely that this Genghis Khan is the Genghis
Khan. The premise is also technically not contradictory, since a Genghis Khan,
who was a warlord, did in fact conquer much of Asia. But how is the NLI model
supposed to know that under Kalouli’s restriction?

A certain amount of prior knowledge is healthy, otherwise the NLI model
would suffer greatly in utility and wouldn’t be able to understand many texts,
like this one:

p: His house was full of flies.

(T6.3)
h: A bunch of bugs got into his home.

or this one:
p: The killer got a life sentence.

(T6.4)
h: The killer will spend the rest of his days in jail.

These are very simple pairs for a human to evaluate. But if we accept
Kalouli’s argument, where premises contain the entire world-view, the space of
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premises and hypotheses that entail would be much narrower. How does the
model know that a fly is a bug? Where does it learn that a life sentence means a
life in prison? Simple premises that contain little knowledge would only entail a
very small set of hypotheses. Without some prior knowledge, NLI models would
perform about as well as an average human reading a very scientific article —
the grammar makes sense, but a lot of the words don’t.

Then again, how would a model behave it it knows all available background
information? This question can’t be answered today. Though there exist lan-
guage models trained on the whole of Wikipedia (let us assume that Wikipedia

is a close as one can reasonably get to the °

‘sum of human knowledge”), the
difficult part is convincing the language model to understand which knowledge
to retrieve, actually retrieve it, and present it to the user. Knowledge is useless
if it is not accessible.

How do NLI models memorize facts in the first place? Do they memorize
every prominent historical conquerer? This is not likely, as the figures Foobar
Khan and B.B. King are also inferred to be warlords according to RoBERTa
LXA and AT-mT5. The model is likely remembering word associations between
warlord/conquer and Khan/King. Omitting Khan or King from the premise
produces NOT ENTAILMENT (although AT-mT5 will also accept the famous war-
lord, Brad Pitt).

6.1.3 Ambiguity of word meaning
The SNLI dataset includes this pair:

p: Two people embrace on the end of a dock. (T6.5)
h: Two people are facing opposite directions. '

Labels suggested by human annotators are all over the map: 2 ENTAILMENT, 2
CONTRADICTION, and 1 NEUTRAL. It is possible that some annotators assumed
that an embrace is like a hug; others could have supposed it is like two people
putting their hands around the other’s shoulders, side by side® . This example
has no gold label (although it should be NEUTRAL, since the hypothesis cannot
be proven or disproven).

This example is one of the rare ones (alongside Text T6.1) where p F
h A p E —h. The logical fallacy is resolved depending on the individual reader’s
interpretation of “embrace”.

38There is a dataset, e-SNLI [20], which provides explanations from human annotators about
why they suggested a certain label for most examples. Unfortunately, example this is not one
of them.
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6.1.4 Ambiguity of senses and homonyms

Section 5.5.5 on page 50 alluded to ambiguity of word senses. If a model was

exposed only to one sense of a word during its training, it may have trouble
discriminating between them in different contexts. This is further evidence
that NLI is profoundly influenced by word-matching and not completely by
semantics.

Take the examples listed in Table 19. From these, it is clear that AT-mT5
has not completely learned the semantics of bark in one direction, which causes
ambiguity and false predictions when used in different contexts. Notice how

even the qualifier tree bark is insufficient to narrow down the sense.

Premise hypothesis Prediction
Giraffes eat bark. Giraffes bark. E
Giraffes eat bark. The giraffe barks. E
Giraffes eat tree bark.  Giraffes bark. E
Giraffes eat tree bark. The giraffe barks. E
Giraffes bark Giraffes eat bark N

Table 19: Entailment predictions of AT-mT5 about barking giraffes.

6.1.5 Ambiguity of subjects
What about this example:

p: At a childrens’ football game, a young boy cheers for his
team. (T6.6)
h: A child plays football.

At first glance, this pair seems like it should be a CONTRADICTION. A child
cheering is probably in the audience and not one of the players. However, this
conclusion is only valid if the children are the same. At a childrens’ football
game, there is undoubtedly a child playing soccer. Thus, an argument can
be made that this pair demonstrates ENTAILMENT if the children are different.
Depending on one’s interpretation, the gold label may be opposite. Kalouli’s
theory also does not help to disambiguate the situation, since all the information
used to make either prediction follows directly from the premise.

We can also return to the buyer-seller example from bidirectional entail-
ment (Section 5.5.5 on page 50):

p: Someone is buying a thing.

(T6.7)
h: Someone is selling a thing.
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If this someone is the same person, then the pair should contradict (or maybe
be neutral, since it is possible that someone is buying and selling at once). If
the someone is different, then the pair must entail, since for every buyer there
must be a seller.

6.1.6 False implication

This example is adapted from MacCartney [78]:

p: Some of the airlines saw costs growing more than expected. (T6.8)

h: Some of the airlines reported cost increases.

Most reasonable people might consider this an entailment, yet, the hypoth-
esis is not strictly implied by the premise. Seeing a cost increase does not imply
reporting the cost increase, and so the label should be NEUTRAL. Yey, many
NLI models do, like humans, predict ENTAILMENT on this pair. To quote Mac-
Cartney: “That the inference is nevertheless considered valid in the NLI setting
is a reflection of the informality of the [NLI] definition.” [78, p. 2]

6.1.7 Ambiguity of grammar

Ambiguous grammar, which is an inherent feature of natural language, makes

it difficult to resolve ambiguities in premises. This premise:
p: I ate a fish with a fork. (T6.9)

entails all of the following hypotheses on both AT-mT5, ML. mDeBERTa, and RoBERTa
LXA:
hy: A fork ate a fish with me.
ho: The fish had a fork. (T6.10)
hs: I used a fork to eat a fish.

Even though the grammar is ambiguous, a human would easily pick hg as
the correct one.

Kalouli’s approach fails here too — with no prior knowledge about fishes
and forks, this ambiguity is completely unresolvable. Try replacing “ate”, “fish”
and “fork” with foreign words and ask a human which hypothesis is the entailing
one.

What about:

p: Tom reminded Jerry that he is a cat. (T6.11)

Who is the cat? AT-mT5, ML mDeBERTa, and RoBERTa LXA predict entailment
on both hypotheses Tom is a cat. and Jerry is a cat.. Even a human, who had
never heard of Tom & Jerry before, would have trouble resolving this example.
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6.1.8 No way to enhance an NLI model’s knowledge.

Clearly, the outcome of the NLI task is not always set in stone despite the
rules of strict logical inference, and depends greatly on the context and the
presuppositions of the reader.

Ambiguitity of categories, reasonableness of prior knowledge, and ambiguity
of word meaning, can all be solved by enhancing an NLI model’s prior knowledge
of the world. If it were possible to tell the model “humans are indeed animals”,
“Genghis Khan was a warlord”, or “an embrace is a hug where people face
opposite directions”, these three ambiguity problems could be addressed. There
are 2 ways to do this short of fine-tuning, but none apply for current NLI models.

Context prompting Some NLP deep learning models accept context before
the actual task is presented. For example, some question-answering mod-
els accept a context as well as a question, and attempt to answer the
question from the context given. GPT-2 [105] and GPT-3 [17], being
text generation engines, also accept context in the form of a paragraph or
several before the text generation phase begins.

To date, NLI models do not support this approach. NLI models are fine-
tuned to exclusively receive a premise and hypothesis, with no additional
context. The context that the models use is limited to the knowledge they
picked up during training.

In this work, the possibility of inserting context into the premise was
briefly explored, but abandoned quickly. Any context given in the premise
which affirms or denies knowledge present in the hypothesis is actually
used in the entailment. Let’s return to the human-animal debate:

p: A human.
(T6.12)
h: This is an example of an animal.

AT-mT5, RoBERTa, RoBERTa LX, RoBERTa LXA, and ML mDeBERTa all pre-
dict CONTRADICTION. So they take the colloquial opinion that humans

aren’t animals. But when context is given into the premise,

p: Humans are animals. A human.
o . (T6.13)
h: This is an example of an animal.

all 5 models then predict ENTAILMENT. So far so good. Unfortunately,

p: Humans are animals. A submarine.
(T6.14)
h: This is an example of an animal.
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also becomes ENTAILMENT on all models, suggesting that the context text
is actually entailing the hypothesis, not the response A human.

Many other texts were tested in this way as well, with the same conclusion
being drawn.

Few-shot learning Few-shot learning is a technique wherein a model can learn
some context to a task by providing it with a few examples of inputs and
outputs before processing the actual prompt. The context is applicable
only to one inference — once the inference is done, the model “forgets”
all it learned from the context and has a clean slate, ready for the next
inference.

Few-shot learning is useful because the few-shot examples can be spe-
cialized to the specific task at hand. In addition, typically, only a few

examples are needed to see an improvement in performance.

Working off of the GPT models, Schtick and Schiiltze [120]; and Gao
et al. [43] explored few-shot capabilities of text generation models for
question-answering. Want et al. [141] later proposed a few-shot method
for classification and regression based on re-formulating texts into entail-
ment tasks.

In digital learning, few-shot learning sounds ideal. When a student re-
sponse comes in, the model can sample from its collection of manually
labeled responses as a reference. The model can draw not only on its
own corpus of knowledge learned during training, but also the few-shot
examples, which are specific to the task and are a good indicator of which
responses entail or not entail which hypotheses.

Sadly, today’s NLI models do not allow for few-shot examples to be pro-
vided. As with context prompting, it is impossible to provide more in-
formation outside the text and hypothesis. A possible workaround is to
fine-tune an NLI model on some few-shot examples using a high learning
rate and reset the weights at the end of the inference, but this approach
may be too computationally expensive to be practical for every single

inference.

Short of further fine-tuning, the knowledge that current NLI models possess
is fixed. Context may be given to text generation models, but to be effective
for NLI, a new dataset would have to be created with examples that require
context to correctly infer, at a minimum.
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6.1.9 Ambiguity in digital learning

How does ambiguity in NLI affect its performance in digital learning?

First, a language model fine-tuned on a specific dataset may not be appro-
priate for different learning subjects at once. For example, a dataset comprised
of colloquial language may not perform well in a scientific subject, due do dif-
ferences in vocabulary, ambiguity of categories, prior knowledge, and learned
word associations which are not easy to change without further training®.

Second, prior knowledge is hard to quantify, making it difficult to create
tasks and hypotheses that won’t be affected by the model’s prior knowledge.
Certain words might have some undesirable associations that mask desired word
associations in the task. The learned association Human ¥ Animal is one of
these masking associations, and is hard to change without re-training

Third, responses containing elements that are similar to a hypothesis but
dissimilar in context may generate false entailments. MacCartney [78] gives an

example:

p: The main race track in Qatar is located in Shahaniya, on
the Dukhan Road. (T6.15)

h: Qatar is located in Shahaniya.

AT-MT5, RoBERTa, ML. mDeBERTa, and RoBERTa LX all predict ENTAILMENT. RoBERTa
LXA is the only one that correctly predicts CONTRADICTION, presumably be-
cause it has seen such tricky examples in the ANLI dataset. This example is
not really an ambiguity but a failure to recognize word meaning, since the word
Qatar has different noun functions in the premise and hypothesis; and possibly
a failure to resolve the TMI problem described in Section 5.5.5 on page 50.

Fourth, a clever student might deliberately write an ambiguous response to
try and confuse the model and cause it to produce incorrect predictions. When
asked to provide an example of an animal, a student could write A human
might be an animal, which entails on RoBERTa and RoBERTa LX'C There is also
the possibility that the word animal in the premise entails This is an example of
an animal, even though animal should be excluded from the space of acceptable
answers.

A side note: A clever instructor might create a mistake hypothesis animal to
curtail such cases. Unfortunately, completely valid responses such as A giraffe is
an example of an animal would also match this mistake hypothesis and falsely

39Gection 6.4 explains why further fine-tuning may be a bad idea.

40Tnterestingly, when the premise contains might not, all models judge it as CONTRADICTION,
further supporting the theory that artefacts such as “not” influence the prediction without
considering the surrounding context. [48, 54].
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be reported as incorrect. Templating sentences (Section 6.3 on page 87 may
provide a solution to this problem.

Finally, because it is impossible to provide external context to today’s NLI
models without further fine-tuning them, and natural languages contains inher-
ent ambiguities, some ambiguities in NLI are unresolvable and the task should
be re-formulated to mitigate the ambiguous language.

Some ambiguities may be resolved by applying classical NLP techniques in
addition to NLI, for example, ensuring that subjects and verbs are similar by
examining the parse trees, but these methods are outside the scope of this work.

6.2 Superhypothesis-hypothesis model

A major challenge with open-ended questions is that student responses have a
very wide range of quality and structure. Consider the following question:

What do giraffes mainly eat?

There are a variety of possible responses, from full-sentence to single words:

Giraffes eat plants.
plants . (T6.16)
plants, grass, shrubs, fruit
giraffes eat mainly shrubs

The “correct” answer is that giraffes eat plants. How should this be expressed
in a hypothesis? If the hypothesis were a full sentence (i.e. Giraffes eat plants.),
then point-form responses like plants would not entail, since the knowledge
Giraffes is not present in the response. On the other hand, if the hypothesis
were point form, then a clever or misguided student might fool the system with
a response like Crabs eat plants., which would falsely entail.

A similar problem arises when the student mistakenly (or deliberately)
includes extra, non-entailing, or incorrect information in their response (see the
TMI problem, Section 5.5.5 on page 50). For example:

task: Which major historical event occurred on June 15, 12157
premise: Napoleon signed the Magna Carta.
hypothesis: The Magna Carta was signed.

Clearly this premise should not be accepted (Napoleon had nothing to do with
it), yet NLI models will classify it as entailing.

A human corrector naturally sets a lower and upper bound on the informa-
tion that should be present in the response. The lower bound is the information
necessary to answer the task, and must be present in the response. The upper
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bound is any additional correct knowledge that the student might enter and
that is relevant to the task at hand. Knowledge that is outside the scope of the
task, or knowledge that is incorrect, is outside of these bounds and should not
appear in a correct response.

Unidirectional entailment sets a lower bound for the knowledge that is
present in the NLI premise. As long as the knowledge in the premise is a
superset of the knowledge in the hypothesis, the premise will entail. This is
one of the fundamental differences between NLI and response-verifying — NLI
is only interested in validating the lower bound, while a hypothetical response-
verifying system will check the upper bound as well. Let K(X) be the knowledge
contained within X.

(NLI(p,h) = ENTAILMENT) = K (p) D K(h)

However, a mechanism to set an upper bound is necessary as well, to pre-
vent students from entering extra erroneous information in their responses. The
easiest way to do this is by constructing a third text, which we will call a “su-
perhypothesis”, which must entail the student’s response. The superhypothesis
should contain all the acceptable information, i.e. the most detailed answer that
could be given.

entails entails

Superhypothesis ——— Response ———— Hypothesis

(NLI(s,p,h) = ENTAILMENT) = K(s) 2 K(p) 2 K(h)

Let us return to the previous examples. We can reconstruct the giraffe task
like so:

Task: What do giraffes mainly eat?
Superhypothesis: Giraffes mainly eat plants, including (T6.17)
grass, shrubs, and fruit. '

Hypothesis: plants

Now, the responses Giraffes eat plants., plants, and grass, shrubs, fruit all the-
oretically entail the hypothesis and are all entailed by the superhypothesis. If
a student includes some knowledge not entailed by the superhypothesis (e.g.
Giraffes eat grass, just like crabs), the superhypothesis does not entail the re-
sponse.

The superhypothesis-hypothesis model provides an easy way to bound the
acceptable knowledge space for a response class. The hypothesis contains the
bare minimum of information necessary for a response to pass, while the super-
hypothesis contains the full set of allowable knowledge - any additional knowl-
edge will not entail. Because we are still working with NLI, all the usual caveats
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apply, including the need for careful phrasing of the (super)hypotheses and ran-
dom errors that occur along the way. For example, the response shrubs does not
entail plants on some models for some reason. Another example: the response
giraffes mainly eat fruit is not entailed by the superhypothesis because of the
particular word order of mainly and fruit.

A drawback of the superhypothesis approach is that it requires additional
work by the task author, and that it gets messy when there are multiple correct
answers to a task. Remember the climate change example from Text T 2.1:

Task: How will climate change affect our planet?
Sample response: Climate change will disrupt weather
patterns. (T6.18)
Sample response: Climate change will make temperatures
more extreme.

What would be the hypotheses here? There would have to be two correct
hypotheses, at minimum, to be correct. Each correct hypothesis would need to
be associated with a superhypothesis to check that a correct answer is within
the acceptable knowledge bound.

Model-specific idiosyncrasies are still a factor, and should be evaluated on a
case-by-case basis. For example, the text King John signed the Magna Carta
at Runnymede. entails Napoleon signed the Magna Carta. using RoBERTa.
Clearly, this RoBERTa has trouble distinguishing between historical figures!

The superhypothesis-hypothesis model is relevant when constructing the
correct-class hypothesis. For mistake classes, if the response entails the mis-
take in any way, regardless of any other knowledge present in the response,
the response should be marked as incorrect and feedback given to the student.
Unfortunately, this approach presents an additional cognitive load for the in-
structor, and requires them to understand the reasoning behind it, which would
make Taskbase’s product less user-friendly and less accessible. Further, when
constructing hypotheses and superhypotheses, it is helpful to understand some
of the nuances of how NLI models interpret text, which users of the NLI sys-
tem cannot be expected to know. An organization might employ “didactical
experts” who are familiar with NLI models and perform premise engineering on
texts to maximize entailment accuracy, but this is additional overhead. Until
an NLI model is invented which does not require expert intervention to maxi-
mize accuracy on arbitrary, human-written texts, the amount of NLI methods
for automatic feedback assignment should be minimized. Exploring more deter-
ministic approaches such as premise engineering is also suggested, rather than
relying on NLI to magically understand every kind of task.
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6.3 Templating sentences

NLI models produce the best accuracy when they are fed complete sentences.
Point-form or keyword inputs are more frequently misclassified than complete
sentences or long-form texts, and there is greater variability and greater noise.
This phenomenon can be expected, since most NLI models are fine-tuned on
the same few datasets: SNLI, MultiNLI, and in the case of multilingual models,
XNLI. These datasets contain primarily full sentences or long-form texts, so
during training, models see natural language as a human would speak or write it
in a conversation. Additionally, pre-training datasets are composed of sentences
or paragraphs. The models are able to pick up sentence-specific features, for
example word order and presence of parts-of-speech, and use those as factors in
classification.

Unfortunately, when faced with an open task and a free-form text field,
students write responses that are all over the map in terms of sentence structure.
Consider the following task and 10 randomly-sampled student responses:

Task: In his speech, Barack Obama explicitly addresses
various groups of people. Explain which groups he is
addressing and what intention could be associated with it.

1. The younger group of people is considered, to them he

owes thanks.

2. Spectators watching on TV and cannot be there.

3. it is addressed to fellow citizens and spectators.
4. Athletes. (T6.19)

5. to attract voters
6. USA
7. Specifically the residents of Washington D.C.

8. He addresses people close to him who listen to him.
9. The older people who have served their country in their
lifetimes.

10. He makes a large group of people feel addressed.

One can see why these examples might be difficult for a machine to deal
with. There is a mix of full sentences, keywords, sentence fragments, varying
capitalization, and missing punctuation. The task also asks two distinct ques-
tions and there is a mix of responses to these. What should the instructor’s
hypothesis be to maximize accuracy? This is not clear. If at least all students
were forced to write in full sentences, the hypothesis could also be a full sen-
tence, and we would expect better performance in this case by eliminating some
of the structural variability.
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The purpose of templating responses is to coax responses into a specific
sentence format where students fill in a clozeﬂ . Unlike fill-in-the-blank-type
closed-ended tasks, clozes in open-ended tasks would involve supplying a sen-
tence fragment to suggest the response’s sentence structure, then the student
fills in the rest of the sentence in free-form text. The template should contain no
information that enables the student to guess an answer, only what is already

presented in the prompt. For example:

Task: Fxplain which groups Barack Obama is addressing. (T6.20)
Template: He is addressing . '

Task: Why were aircraft carriers decisive in the
Asia-Pacific War? (T6.21)
Template: They were decisive because .

Task: What is one of the functions of the Golgi apparatus? (T6.22)
Template: One if its tasks is ___.

This approach has several benefits. First, it forces students to think and
write in terms of full sentences, which can potentially improve communication
outcomes. Second, it produces texts which are all full sentences of similar struc-
ture, which are easier for machines to process. Third, full-sentence structures
enable extracting more knowledge from the NLI model, as seen in Section 5.8.

Many examples in Taskbase’s datasets are dirty and not suitable for NLI
for several reasons:

e Many task prompts were missing or incomplete. This was a flaw of the
data collection process at the time.

e Hypotheses are very often point-form or sentence fragments. It is difficult
to infer what the hypothesis means.

e Many hypotheses contain multiple facts in an either/or situation, for ex-
ample:

h: youth/students (T6.23)

Unfortunately this is not how NLI works — an NLI model will try to find
both youth and students in the premise. Premises that do not contain
both become NEUTRAL or CONTRADICTION.

41The cloze method is a method where words or fragments are removed from a sentence
and the reader is asked to fill in the blanks.
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For these reasons, constructing a dataset of sufficient size using templated sen-
tences was judged to be too time-consuming. However, many times throughout
the work when analyzing stubborn texts, a templated-sentence approach pro-
vided a quick fix.

Templated sentence can also work to address the variable structure problem
described in the section on the superhypothesis-hypothesis model (Section 6.2 on
page 84). Recall the responses from Text T 6.16 on page 84. If these responses

were templated (the template is underlined):

Giraffes eat plants.
Giraffes eat plants, grass, shrubs, fruit (T6.24)
Giraffes eat mainly shrubs

then a single hypothesis format would be sufficient for all of these to entail.
Another example with a more open-ended task:

Task: How will climate change affect our planet?
Hypothesis: Climate change will .
Sample response: Climate change will disrupt weather

(T 6.25)

patterns.

Sample response: Climate change will make temperatures

more extreme.

Not every task is suitable for templating. If a task is too open-ended, there
exists no template that can be applied to every possible response:

Task: What do you know about the Battle of Midway?
Hypothesis: 777
Sample response: Aircraft carriers were used on both
sides. (T6.26)
Sample response: It was at the time the biggest naval
battle in history.
Sample response: The Japanese navy was defeated.

All three responses are true, but cannot be templated into the same sen-
tence.

Templating sentences seems to provide many solutions to misclassifications
arising from variability of responses with little additional cognitive load on the
task author. It is not a universal fix, but nevertheless widely applicable. There is
also the option of altering existing tasks or creating new tasks to be templating-
friendly — just because the task about the Battle of Midway couldn’t be ef-
ficiently templated, doesn’t mean that the task cannot be put into a better,
alternative wording.
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6.4 Tailored datasets and fine-tuning

The standard process for developing NLP models using machine learning follows
the pre-train, fine-tune, predict paradigm [74]. A generalized language model
(GLM) is first trained on a massive text corpus so that it begins to ”understand”
the structure and form of natural language. This step is computationally very
expensive, so most state-of-the-art GLMs have been trained largely by wealthy
organizations with large-scale computing resources, a process which takes several
days (e.g. Google’s T5, [107], Facebook’s BERT [35] and BART [73], Microsoft’s
DeBERTa [50], and OpenAl’s GPT family [104, 105, 17] are or were all state-
of-the-art models). Next, the GLM is fine-tuned on some downstream task.
This step takes a GLM and “teaches” it to apply its knowledge to different
objectives, e.g. text classification, text generation, translation. Most language
models today which can be immediately applied to real-world tasks are fine-
tuned versions of GLMs.

It is this two-phase training process that enables effective transfer learning
using GLMs [58]. Fine-tuning is the most common approach of specializing a
GLM to a specific downstream task or a specific context (e.g. the legal world,
as in [63, 66]), and yields very good performance across the board [17].

Fine-tuning a generalized model offers many advantages over training a new
model from scratch:

e Fewer examples in the fine-tuning dataset are needed. The size of fine-
tuning datasets ranges from hundreds of examples [58] to hundreds of
thousands [16, 17, 94, 147], compared to the millions and more required
for pre-training.

e Fine-tuning can focus on a specific downstream task. For example, GLMs
are fine-tuned on NLI datasets that specialize the models for the NLI task.

e Fine-tuning can teach the model new concepts, and reinforce certain ar-
eas of knowledge within a restricted context. For instance, a model un-
derstanding legal language can be fine-tuned from a GLM using focused
datasets like COLIEE [63] and ContractNLI [66] in the legal world.

e Adversarial examples can be introduced into the fine-tuning dataset to
teach the GLM misconceptions and eliminate failure cases [94].

With these strengths, fine-tuning would appear a perfect approach to solv-
ing many of the pain points of general NLI models in the setting of digital learn-
ing. Models can be fine-tuned on existing student responses and hypotheses,
new fine-tuned models can be created for each learning subject, and relatively
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few examples are needed in the fine-tuning set to show a noticable increase in
performance.

Unfortunately, fine-tuning a GLM or even a pre-fine-tuned NLI model is
an undertaking not perfectly suited for digital learning platforms. There are
important considerations in both the development and deployment of fine-tuned
models.

First, tasks are evolving entities which must, annoyingly, remain compati-
ble for a long period of time. That is, a task’s NLI model must produce the same
predictions every time it is invoked with the same inputs. Introducing an up-
dated “version” of an NLI model might introduce regressions in existing tasks.
This requirement of consistency also precludes the possibility of continuously
fine-tuning the NLI model during a course as new tasks and responses come in.
Fine-tuning on new data during a course may similarily cause regressions.

Second, it is not completely clear what set of data to fine-tune from. If a
new version of an NLI model is fine-tuned based on data is has already seen,
there is a risk of (a) the data becoming out-of-date by the time it is collected,
as educational trends shift, and (b) the model overfitting on training data and
not generalizing well to new tasks or responses. The risk of overfitting is greater
when much of the data is similar, which is the case when the fine-tuning dataset
is constructed from few tasks and all of the tasks’ responses and hypotheses.

Unlike GLMs, models fine-tuned for digital learning see the world through
an extremely narrow lens. For example, if a model M is fine-tuned on a dataset
consisting strongly of science-related tasks and some instructor creates a task
about art history for the very first time, there is a good chance that M would not
perform very well since it has not seen relevant examples about this new field.
A possible workaround would be to curate several models for different learning
domains, e.g. a model for art history, one for chemistry, one for French, etc.,
and a “general” one as new subjects are introduced

Third, if the fine-tuning dataset comes from existing tasks, it is very likely
that the learning domains for these tasks will be imbalanced. This imbalance
would unfairly penalize tasks whose subjects are under-represented in the fine-
tuning set.

Fourth, in the case of Taskbase, there are very few data which are clean
enough to construct a fine-tuning dataset. See Section 6.5.

The fifth and final drawback is a technical one. Language models are heavy-
weight, requiring several gigabytes of memory if they are to be loaded and avail-
able. Initializing a language model takes tens of seconds to minutes, depending
on the hardware and size of the model. Unfortunately, the evolution of language
models appears to follow the mantra “bigger is better”, with GLMs having more
and more parameters than previous state-of-the-art. The number of parameters
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in language models is increasing very rapidly (see Figure 6). Increasing model
size provides a greater boost in performance than other hyperparameters [17,
107, 116]. Serving many of these, potentially subject-specific, models at one
time would require several GPUs in order to have enough memory. GPUs are
an expensive commodity.
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Figure 6: Trend of GLM model sizes over time. Models are often released in
various sizes to fit different use cases. For each model, every point represents one
of these sizes. The maximum model sizes are 175 billion parameters (GPT-3)
and 176 billion parameters (BLOOM). The exception is DeBERTa v1, which is
relatively small with respect to the trend but outperforms T5 in certain bench-
marks [50].

Given these give drawbacks, developing new NLI models and evolving ex-
isting ones must be done with great care when working with online learning
platforms.

There are methods other than fine-tuning that can increase NLI perfor-
mance. These methods don’t require massive amounts of fine-tuning data, are
fast to apply, and can be toggled on and off if need be. Suppose that an instruc-
tor wishes to repeat a course from the previous year. Re-using the course’s tasks
for new students is useful because the instructor would already have developed
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task hypotheses and would understand the edge cases where NLI might fail.
There also exists a corpus of student responses that can augment the predic-
tive strength of the model, which can be done in several ways (Figure 7 on the
following page):

1. Using clustering techniques to assign new responses to mistake (or correct)
classes based on the assignment of previous responses to classes.

2. Using few-shot classification approaches. This involves using a few-shot
model (one that does not need to be pre-trained, but receives context
directly in the text) to infer entailment from previous examples [17]

3. Augmenting the NLI model with extra layers, pre-training their weights
using open datasets, then fine-tuning only those layers on existing labeled
examples from previous years. This approach allows for fine-tuning mod-
ular “heads” that can be swapped out depending on the task without
touching the base model.

4. Selecting a different NLI model based on its performance on past, labeled
responses.
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Figure 7: Illustrations of how to exploit existing responses when re-using tasks
alongside NLI. 1. A response is assigned into clusters of correct or mistake
classes based on some distance function. 2. The input is fed into a text gen-
eration model alongside several existing examples in a few-shot fashion. 3. A
smaller model can be fine-tuned on existing data as a re-usable head for the
larger base model. 4. Several models are evaluated on existing responses and
the best-performing one is selected.

6.5 Tasks from the Taskbase corpus

Previous sections looked at analyzing tasks from Taskbase datasets en masse.
This section will focus on tasks individually and attempt to deduce the various
“types” of tasks and whether they are suitable for being used with NLI, whether
they should be somehow modified, or if they are unsuitable at all.

After sampling many tasks from the Taskbase corpus and learning from
this work’s findings, it was determined that tasks which are good candidates for
NLI...

e have responses which cover a small structural space;

e can be templated into full sentences or accept only full-sentence responses.
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Conversely, bad candidates...
e have responses covering a large structural space;
e accept keywords or sentence fragments as responses;

e accept combinations of responses at once (i.e. questions “list N examples
of X

e are unclear in how hypotheses and responses should be formulated.

A “bad candidate” has trouble accepting correct responses and frequently
produces false predictions under normal use. “Good candidates” perform well
under normal use, but these still succumb to failure under adversarial or chal-
lenging conditions, as will be demonstrated. Creating a task which is a “good
candidate” does not preclude including additional safeguards such as bidirec-
tional entailment, superhypotheses, or non-NLI techniques to minimize adver-
sarial cases.

Each type of task in Table 20 on the next page was evaluated on several

models to confirm whether they exhibit common failures with NLI, or whether
NLI is robust for that type of task. To do this, adversarial premise-hypothesis
pairs for each type were constructed. These pairs were designed to look like a
legitimate pair, yet fool the NLI model into giving an incorrect prediction. Some
inspiration was drawn from the ANLI dataset. In some examples, premises
directly from student responses from the Taskbase Platform were used. For
reasons of user privacy, these texts will not be printed in this section.

The following sections explore each type of task and present 10 important
principles to which tasks should adhere in order to be NLI-friendly.
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Type NLI-friendly? Example

Translation Yes Translate the following into French:
Pariz je hlavné mesto Francuzka.
Negation Yes Negate the following sentence: Jane
studied in London.
Captioning Yes Describe the interaction between the
girl and the dog in this picture.
Clear answer Yes In a full sentence, why did Jane move
to Frankfurt?
Verb tense No Write the following in past tense: Jane

is running a marathon today.
List N examples No What does the main character like
about the country? Name two things.
Multiple questions No Martin Luther King addresses differ-
ent people in his “I have a dream”
speech. Which groups is he address-
ing and what is his intention?

Keywords or categories No What is the word for these? Peach,
orange, pineapple, grape.
No clear hypothesis Partially Write a sentence about dogs in past
tense.

Large structural space Partially In The Little Red Riding Hood, what
is the wolf’s intention by dressing up
as the girl’s grandmother?

Table 20: A summary of the tasks in the Taskbase corpus and whether they are
good or bad candidates for NLI.

6.5.1 Translation

Translation tasks ask the student to translate a text from one language to the
other:

Task: Translate this sentence into French: (T6.27)
Emily was outside buying eggs at the market. '

Multilingual NLI models can handle premises and hypotheses in different
languages. This trait gives task authors a lot of flexibility in creating hypotheses:

e Hypotheses can be written in the source language. Since multilingual
models handle cross-language tasks well, the target-language response will
probably entail the hypothesis.
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e Hypotheses can be written in the target language. This boils down to
single-language entailment.

Since multilingual models can predict entailment cross-language, there must
be an additional language detection mechanism to ensure that the student re-
sponse is written in the target language, otherwise a student might write the
source-language prompt, which will most likely entail itself.

A similar approach to verifying translation tasks would be to employ a
machine translation mechanism, either translating the prompt to the target
language or the response back to the source language, and comparing the two
same-language texts. This approach has pitfalls. First, a translation machine
gives a specifically-formed sentence, which may not structurally match what the
student wrote. Second, NLI is an easier problem than machine translation, and a
translation machine is likely to give errors or misunderstand a word sense. In the
end, verifying translation tasks using machine translation would be equivalent
to NLI anyway, but with more steps that can go wrong. In fact, multilingual
NLI is used to benchmark translation machines [33].

Since a translated text must be semantically equivalent to its source text,
bidirectional entailment may be used to ensure equivalence.

Another benefit of multilingual models is that the instructor does need to
know the target language and does not need to translate the texts themself.
Since multilingual NLI will happily match e.g. an English sentence to a French
one, specifying the source sentence is all that is required. In fact, this process
can be completely automated for a language course: a sentence can be sampled
from a large corpus (say, Wikipedia, or works of fiction), given to the student
to translate, and a multilingual NLI model will compare the source sentence to
the translated sentence and give appropriate correct/incorrect feedback.

Principle #1
Translation tasks are self-correcting, but require additional support
beyond NLI.

6.5.2 Negation

Some tasks on language learning ask students to negate a sentence. Negation
means a dramatic shift in the semantics of a sentence, and so transcends other
grammatical features such as verb tenses and active/passive voice. One of the
benefits of NLI models is their ability to detect negations even when the sen-
tences are otherwise similar.

Care must be taken when a sentence has several possible negations:
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Task: Write this sentence using “not”:

. (T6.28)
Jean was relieved that he could come to Sofi’s party.

The hypotheses Jean was relieved that he could not come to Sofi’s party. and

Jean was not relieved that he could come to Sofi’s party. falsely bidirectionally

entail, and are interchangeable in this case since they both entail the prompt

sentence.

Additional care must be exercised — if models display prediction biases
due to hypothesis artefacts, placing a “not” in a hypothesis might encourage
the model to predict CONTRADICTION [9, 48, 54]. Hossain et al. [53, 55] also
demonstrated that negations are not well-represented in NLI corpora, which
may also create artefacts.

Furthermore, this task has a very well-defined answer with little room for
the student to deviate. It is possible that simple negation tasks could be per-
formed cheaper and with better accuracy using simple pattern-matching and
classical NLP pipelines. Although NLI models generally handle single nega-
tions well, negation tasks might be better suited for other methods.

Principle #2
Reconsider using NLI when simpler NLP methods do the trick.

6.5.3 Captioning

The SNLI dataset is made up of image captions from Flickr. It would be a rea-
sonable assumption that fine-tuning NLI models on SNLI would cause them to
better understand captioning and captioning-like tasks, but, as always, caveats
and failure cases occur.

Captioning is a didactically useful task for language learning, especially
when combined with learning other facets such as grammatical structures or a
second language. The following task demonstrates all of thesef:

42Image from https://pixabay.com/photos/retiree-pensioners-elderly-couple-7390179/
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Task: Describe what you see in this image in Spanish. Use past tense.

NLI is sometimes quite tolerant to structural variance of text and hyper-
nyms. If a student provides a response that is more detailed than the hypothesis,
the model may still predict ENTAILMENT. In this example:

p: A golden retriever is being embraced by a little girl. (T6.29)
h: A child is hugging a dog.
the student writes a response with two hypernyms and passive voice, but it is
still judged as ENTAILMENT by AT-mT5.

Unfortunately, even models trained on SNLI still exhibit problems with
word-matching, TMI, and producing false entailments. The following nonsen-
sical premises still entail on AT-mT5 (which was not trained on SNLI), and
RoBERTa YNIE (which was). The latter premise actually entails bidirectionally.

p1: A golden retriever is being embraced by a little girl about
the morality of condensation. (T6.30)
p2: Hugging children on historical dogs

Other tasks may resemble captioning:

Task: What does Hermione do when Ron calls her a
know-it-all? (T6.31)
h: She points her wand at Ron threateningly.

This example has commonalities with image captioning: the hypothesis is writ-
ten in present tense, and could be a caption to an image (except the pronoun
She and the name Ron, which are context-dependent).

A possible way to transform misbehaving tasks to an NLI-friendly format
could be to phrase the prompt in a way to encourage captioning-like responses,
but this strategy was not thoroughly tested.
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Principle #3
Captioning-like tasks are good under normal use, but fine-tuning

does not eliminate even simple adversarial examples such as those
which arise from matched words.

6.5.4 Clear answer

Tasks can be open-ended but still have one or at most a few clear, well-structured
responses. For example:

p: In a full sentence, why did Anne Frank spend all her time
indoors? (T6.32)
h: She was hiding from the Nazis.

This is a rather clear answer that presumably is taught verbatim in all studies
about Anne Frank.
Another example:

: How will climate change affect the world’s oceans?
P ge aff (T6.33)

h: Ocean levels will rise.

Other common and clear-cut hypotheses might be Sea life will die off or The
oceans will become warmer. The point is, there is a finite set of acceptable
hypotheses that are well-entailed by clear, well though-out responses.

Note that these two examples may be asked in the format of multiple choice
since they expect a fact as an answer.

NLI works well here because the correct answers and common misconcep-
tions are enumerable, have relatively little knowledge per sentence/hypothesis
so as to not confuse the model, and have relatively few ways in which an answer
can be phrased. In fact, this type of task is ideal for NLI because it very closely
matches NLI models’ training data.

Principle #4

Tasks should have few hypotheses, and few ways to phrase them

6.5.5 Verb tense (and possibly other grammar-sensitive tasks

In tasks which ask the student to provide a specific verb tense, AT-mT5 is easily
fooled with a different verb tense. In English, the sentence Jane ran a marathon.
entails Jane is running a marathon.. In other languages with richer verb tenses,
the problem is more critical. French for example has two future tenses: a
futur stimple and futur composé between which the AT-MT5 model is unable to
differentiate:
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p: Jean va fermer la porte (T6.34)
h: Jean fermera la porte
produces ENTAILMENT.

Worse, AT-mT5 often cannot differentiate between less related verb tenses.
The phrase Jean est allé a France. does entail Jean ira ¢ France forwards and
backwards, despite the former being past tense and the latter being future tense.
This phenomenon also makes it difficult to construct feedback for misconcep-
tions, as a misconception using an incorrect verb tense is likely to be entailed
even by a correct response.

It is possible that NLI models apply some stemming logic to sentences. In
this case, est allé and ira might both be stemmed to the infinitive aller (to go).
To verify responses to verb-tense tasks, a grammar engine or string matching
approach should be used.

It is not clear to which grammatical constructs this problem extends — con-
structing a comprehensive dataset of semantically-identical but grammatically-
different sentences should be the first step to investigate this. For example,
AT-mT5 has trouble differentiating active versus passive voice:

p: The package was delivered by Jean.
(T6.35)
h: Jean delivered the package.

entail. Other grammatical constructs were not tested.

Principle #5

NLI is not a replacement for classical NLP.

6.5.6 List N examples

When a task asks to list IV examples of something, it is impossible to construct
a single hypothesis which is entailed by all correct responses when the total
number of valid examples is greater than N. Suppose that a response p lists 3
valid examples, but the instructor allows 5 valid examples in the hypothesis h.
Then p cannot entail h since there is some knowledge in h not present in p.
Further, as demonstrated by the Taskbase SimpleK dataset, if the N ex-
amples are keywords, there may be a lot of variability introduced.
Constructing misconception hypotheses is also challenging, since an NLI

model may “miss” some items in a list, as shown here:

Task: name 3 things that giraffes eat.
p: Giraffes eat twigs, shrubs, and fruit. (T'6.36)
h: Giraffes eat shrubs
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AT-mT5 predicts NEUTRAL on this example®® . If the word shrubs were changed
to twigs or fruit, then AT-mT5 would correctly predict ENTAILMENT. Since shrubs
aren’t entailed, the student would falsely be given feedback that they entered
something that giraffes do not eat.

A workaround for this problem exists. When a task calls for N examples
of something, the student can be asked to provide N distinct responses, which
are matched against a set H : |H| > N of hypothesis. If more than N of the
hypotheses are entailed (and no mistake hypotheses are matched), the response
is correct. This approach boils each of the N responses to entailment on a single
fact, which is easy for NLI models to reason about. Templating responses to
improve entailment accuracy can also be used here.

Principle #6
Tasks should not ask to provide more than one answer. If necessary,
reduce these tasks to a multiple-answer ensemble.

6.5.7 Multiple questions

Sometimes, tasks ask multiple questions in the prompt:

Task: Martin Luther King addresses different people in his
“I have a dream” speech. Which groups is he addressing and (T 6.37)
what is his intention?

Multiple questions in a task are very NLI-unfriendly. First, task hypotheses
would have to address both questions. If there are multiple possible hypotheses
for each question, then the number of hypotheses that need to be written grows
superlinearly, increasing time needed for task creation and reponse evaluation.
Second, students are overwhelmingly likely (based on Taskbase’s data) to only
respond to one of the questions, leading to a result of “incorrect” since the
hypotheses address more knowledge. Third, placing more knowledge on the
shoulders of an NLI model is more likely to introduce noise.

In prompts that ask for more than one atomic thing, the task should be
split up into sub-tasks. Subtasks are faster, more modular, easier to interpret,
easier to correct, and do not lose any ability to evaluate students’ learning.
Moons et al. [92] describe some of the difficulties in maintaining non-atomic
tasks and feedback items.

Principle #7
Tasks should ask an atomic question. Non-atomic questions should
be split into several tasks.

43This is actually one of those examples where adding a full stop to the hypothesis makes
everything work correctly.
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6.5.8 Fragments, keywords and hypernyms

Task: What is the word for these? Peach, orange, pineapple,

(T6.38)
grape.

The correct answer is fruit. However, as seen in Section 5.8 on page 69, any fruit
can be used as a response and it would generally entail fruit. An adversarial
premise might be banana, but a mistaken student may simple name one or all
of peach, orange, pineapple, grape and the response would still entail fruit.

Section 5.8 on page 69 alluded to the idea of categories and characteristics
and not necessarily hypernyms. A giraffe is an animal living in the Savannah,
but this is not strictly a hypernymy relation. If an instructor wants to have
students name animals living in the Savannah, because NLI models have little
knowledge of relations between words and their characteristics, the instructor
would have to enumerate all Savannah animals.

As seen throughout Section 5, the Taskbase SimpleK dataset of keywords
and sentence fragments displayed significantly different behaviour and more
variability than datasets composed of full-sentence examples. It is for this rea-
son that keyword-based or sentence fragment-based tasks should be avoided:
they are ambiguous, differ in behaviour, and require additional training for NLI
models which understand complete sentences.

Tasks dealing with keyword hypotheses or responses are a good candidate
for templating.

Principle #8
Prefer tasks whose responses are full sentences. Beware of
variability and unwanted relations in keywords.

6.5.9 No clear hypothesis

Sometimes, a task can be so open-ended that there cannot be a reference answer:

Task: Write a sentence in German using both a feminine (T6.39)
and masculine noun.

Task: What might Harry Potter think about a new course at (T 6.40)
Hogwarts called “Beginning Conjuration”? '

Task: log;, 10 < N < v/25. How might N occur in real life? (T 6.41)
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How is an NLI model supposed to evaluate responses to these without a refer-
ence? The space of hypothesis for these types of tasks is unbounded or so large
that it is impractical to cover.

Tasks like this are common in language learning, where students must con-
struct their own sentences or paragraphs with no strict guideline except the
usage of a vague theme, as in Text T 6.39 on the preceding page.

NLI tasks characteristically require specific correct and mistake hypotheses.
Tasks which allow an unbounded space of possible responses are, by definition,
unsuitable for NLI.

Principle #9

Tasks must have a well-defined hypothesis.

6.5.10 Large structural space

Task: In The Little Red Riding Hood, what is the wolf’s

T6.42
intention by dressing up as the girl’s grandmother? ( )

This task is interesting. At first, it might appear to be a good candidate for
NLI. However, when the task is posed to students, several “types” of responses
appear:

The wolf is lying to her so she can eat her later.
The wolf is trying to assuage her.
The wolf invites her into the house.
The wolf wants to make her feel calm.
The wolf tries to calm her.
The wolf wants to show Little Red Riding Hood that she (T 6.43)
would be safe with him.

The wolf lures her into the house reassuringly.
The wolf tries to win her trust.

The wolf appears nice.
The wolf is fooling Little Red Riding Hood.

Important structural differences are underlined.

These are all correct responses and should all entail the correct class. Many
of these responses are semantically equivalent, and yet, do not entail the same
hypothesis! For example, when a premise is phrased like The wolf is calming
her and The wolf wants to calm her, AT-mT5 will consider these as semantically
different texts. There are several things that are happening with this particular
task:
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1. There are many different verbs.

2. There are many ways verbs can be qualified: as present tense (lures her,
as a participle (is lying), or as an infinitive (as in wants to calm or tries

to... or is trying to...).
3. There is supplemental knowledge in about half of these prompts.

4. There are ambiguous pronouns (e.g. is the wolf a she or a he? If the wolf
is female, the she pronoun becomes ambiguous).

5. There is passive and active phrasing, e.g. calm her and make her feel
calm.

So many variations! The combinations in which they can be written are enor-
mous, probably far greater than an instructor cares to list in individually-crafted
hypotheses. And, students will no doubt invent even more ways to phrase a cor-
rect answer which may not be picked up by the NLI model. Even though some
variations technically have different semantics, as is the case with The wolf
wants to calm her and the wolf is calming her, this particular difference does
not matter in the context of this question.

The problem with this task is that the structural space of premises is too
large — there are too many ways in which a student can structure a response to
mean the same thing. To be a good task for NLI, this space needs to be reduced.
One way to do this is by templating, i.e. providing a prompt like The wolf is
trying to ___ and having students fill in the blank. There are still many verbs
to consider, but at least many of the variations are eliminated by the template.

There probably does not exist an algorithm for determining whether a task
has a large structural space of premises. This of course highly depends on the
task and the creativity of students. The major drawback of these kinds of tasks
is that there is a large risk of differently-structured responses to not entail a
common hypothesis. This risk is greater if there are slight semantic variances
between responses that should entail a common hypothesis, but do not matter

in context.

Principle #10
There should be few ways to phrase a response. Beware tasks which
actually accept several subtle semantic variations of a response.

6.5.11 Wrapping up

Some tasks are NLI-friendly in that they comfortably entail responses to well-
crafted hypotheses under normal use. Some tasks need to be adapted, others
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have too many failure cases. However, all tasks on several models demonstrate

failures on adversarial texts, which may allow a clever student to “bypass”

the task, or worse, entail a lazy or poorly-constructed response to an incorrect

hypothesis. Additional methods of verifying responses are recommended, such

as bidirectional entailment, superhypotheses, or classical NLP techniques.

10.

To summarize the 10 principles:

. Translation tasks are self-correcting, but require additional support be-

yond NLI.
Reconsider using NLI when simpler NLP methods do the trick.

NLI is well-behaved only under normal use. Fine-tuning does not eliminate
even simple adversarial examples such as those which arise from matched
words.

. Tasks should have few hypotheses, and few ways to phrase them.

NLI is not a replacement for classical NLP.

Tasks should not ask to provide more than one answer. If necessary, reduce
these tasks to a multiple-answer ensemble.

Tasks should ask an atomic question. Non-atomic questions should be
split into several tasks.

Prefer tasks whose responses are full sentences. Beware of variability and
unwanted relations in keywords.

Tasks must have a well-defined hypothesis.

There should be few ways to phrase a response. Beware tasks which
actually accept several subtle semantic variations of a response.
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7 Future Directions

Much work has gone into this thesis to arrive at an unsatisfying conclusion: “it
depends.” It depends on which model is used, which dataset is tested, which
datasets the model was trained on, the specific wording of texts, whether a text
uses the word “although” instead of “but”, the speed of Usain Bolt, and the
retrograde of Jupiter. Clearly, more questions have been raised than have been
answered, but these questions are ripe for study.

Testing more models Is there an untested model that might have better per-
formance? To answer this, a standard test suite of general and domain-specific
NLI examples must be created. One interesting direction is investigating De-
BERTa in more detail, as it offers fantastic performance for its size — DeBERTa
v3 XSMALL outperforms RoBERTa in a quarter of the size, and the 1.5B pa-
rameter model outperforms Google’s T5 with 11B parameters [50]. Small and
performant models may be great candidates to fine-tune on common learning
subjects and serve multiple subject-specific models at once.

Leveraging classical NLP Can classical NLP techniques be used to augment
NLI? Could techniques such as parse tree inspection, word relation extraction
[88], or Rhetorial Structure Theory (RST) [56, 81, 134] give a hint to resolve
pairs which are ambiguous to a deep NLI model?

Fine-tuning datasets What is the effect of fine-tuning on a particular dataset?
An ablation study where one model differs from another by only an absence of a
fine-tuning dataset could reveal the contributions of individual datasets on NLI
performance. An example has been alluded to about ANLI earlier in this work.

Exploiting existing responses When a task already has a sizeable cor-
pus of manually- or automatically-labeled responses, how can these existing
responses be used to increase prediction accuracy for new responses? Section
6.4 on page 90 proposes some possibilities.

Creating new datasets It would be tremendously useful to create new datasets
to quantitatively address some of the findings from Section 5:

o A dataset of NLI examples where parts of one text’s parse tree are re-
placed, to see whether NLI models are more sensitive to certain structures
or parts of speech than others.
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e A dataset consisting exclusively of premise-hypotheses pairs which resem-
ble student responses and hypotheses to as task, perhaps constructed from
a Question Answering (QA) dataset. The purpose of this dataset would
be to assess whether it is a suitable surrogate for real-world data. SciTail
[65] could be used as a starting point.

e An NLI dataset where the backward direction is also labeled, to assess the
accuracy and value of bidirectional entailment.

Using adversarial examples Could fine-tuning on pathogenic cases improve
prediction quality? Certain (p, h) pairs are pathogenic, meaning that they con-
sistently fail and interpreting why they fail is hard. These pairs could be col-
lected into a new dataset, which we shall call the Digital Education Adversarial
NLI (DEANLI)&, for use in future fine-tuning. Examples of adversarial pairs
can be collected directly from a learning platform if task authors report mis-
classified responses through a user interface.

Exploring knowledge graphs Do knowledge graphs encode the same infor-
mation as an NLI model? Some research has gone into using knowledge graphs
alongside NLI [38, 121, 126, 127, 143]. Knowledge graphs can be thought of
as similar to language parse trees, except that they encode semantic relations
instead of syntactic ones. A knowledge graph could be used in the context of
the TMI problem 5.5.5 on page 50 to assert that extra knowledge in the premise
does not contradict a known fact.

Investigating dataset imbalance Most modern NLI datasets are construct-
ed for 3-way entailment. However, as this work was concerned with 2-way en-
tailment, datasets suddenly became imbalanced in favour of NOT ENTAILMENT
outcomes. This may affect a model’s apparent bias since models appear more
performant if they bias predictions towards NOT ENTAILMENT and makes sta-
tistical analysis a little hazy (i.e. is a “chance” outcome 50/50% or 33/67%
7). Re-fine-tuning a base GLM on NLI datasets balanced for 2-way entailment
would indicate if the imbalance has an effect on performance.

Investigating domain-specific datasets When models are fine-tuned on
non-general datasets, does that knowledge transfer to evaluating entailment on
Taskbase’s datasets? Datasets such as COLIEE [63], ContractNLI [66], MedNLI
[115], and SciTail [65] have not been studied in this work but may illuminate
the path forward.

44it’s funny because a “dean” is a person in charge of a school
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8 Conclusion

Using NLI in digital learning is not a new concept. Methods of automatically
verifying and grading student responses by comparing them to reference answers
have existed since the 1990s. However, the use of deep learning to perform NLI
is relatively new.

NLI appears to be a promising tool in digital learning, but sometimes re-
quires human assistance to engineer tasks, hypotheses, and pre-process premises
in order to perform well. No universal approach to engineering the NLI pipeline
was found that worked on all texts. NLI can be a great tool to check simple
student responses for semantic correctness of the presence of certain ideas, but
should be augmented with other techniques to verify the technical correctness
of the response. Many applications (e.g. knowledge extraction, document re-
trieval, document matching) of NLI assume that premise and hypothesis texts
already exist and are fixed, or that at least premises are fixed, and that a mis-
entailment has little practical consequence. But when a user can input arbitrary
premises and hunt for adversarial cases, trouble ensues.

Performing NLI for feedback assignment is not easy. Many factors which
can confound the NLI model and may inhibit prediction accuracy need to be
taken into account, such as the Too Much Information problem (Section 5.5.5),
several types of ambiguities (Section 6.1), variance between different NLI mod-
els, selection of training datasets, and domain-specific requirements that restrict
the ability to fine-tune models.

NLI models often display random and inexplicable behaviour on some texts.
Many times, these noisy predictions can be solved by prompt engineering on the
premise and hypothesis, which may include enforcement of correct capitaliza-
tion, enforcement of proper punctuation, entailment in the opposite direction,
or bounding the acceptable knowledge space of student answers.

It is relatively easy to make NLI work in digital learning for common cases,
but incredibly difficult to remove adversarial cases and ways for students to
abuse the system and cause false entailment predictions to be made. Oftentimes,
the inclusion of certain keywords is enough to trigger an ENTAILMENT prediction
and fool a model into classifying a response as entailing. Indeed, NLI models
appear to consider word similarity between the premise and hypothesis as well as
semantic similarity, a property that has been revealed by engineering nonsensical
premises using the same or similar words as a hypothesis. Models appear more
sensitive to the presence of certain types of words while appearing to ignore
other words entirely.

A challenge to deep-learning NLI is how to provide context knowledge to
the NLI model, that is, how to augment or override the model’s existing knowl-
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edge base in order to teach it subject-specific words or concepts. Current NLI
models have no mechanism to insert context, nor are there any NLI datasets
that provide tricky, context-dependent texts. It may be possible to exploit a
general text-generation model such as GPT-3 to provide context, but such al-
ternative directions were not studied in this work. Indeed, many failures in
the tested NLI models were due to incorrect word associations, so a method to
instruct an NLI model to interpret a word or concept a certain way would be
tremendously helpful.

NLI models trained on the challenging ANLI dataset appeared to catch
more pathogenic cases than other models. This suggests that adversarial data
might be an important tool for continuously improving NLI models for digi-
tal learning. Indeed, results show that training and fine-tuning datasets are
more important than model architecture. For example, three RoBERTa-based
models, each fine-tuned on different datasets, all displayed different behaviour.
However, fine-tuning on many datasets has diminishing returns — the RoBERTa
Ynie model was trained on four datasets, including ANLI, but does not show
such a dramatic increase in performance over others, and is actually outper-
formed by simpler models in some areas.

This thesis made the following contributions:

e A benchmark of common NLI model architectures and fine-tuning schemes
on many of the most common NLI datasets with a greater range of col-
lected statistics than many current surveys;

e A benchmark of the same models on datasets collected from the Taskbase
Learning Platform;

e A characterization of the effect of full stops and capitalization on model

performance;

e A characterization of NLI model behaviour on full sentences versus key-
words or sentence fragments;

e Identification of pain points and failure cases of NLI models for a variety
of phenomena, including word association;

e A presentation and characterization of bidirectional entailment as a tool
for evaluating student responses to tasks;

e A short study of how well NLI models encode hypernymy relations;

e A summary of different types of ambiguity and how ambiguity might affect
the NLI task in general as well as within digital learning;
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The superhypothesis-hypothesis model, in which the information of a
student response may be bound;

A text templating approach to NLI, in which student responses can be
coaxed into a similar textual structure to eliminate variance and improve
performance;

An exploration of the drawbacks of model fine-tuning in digital learning
and how these models may be augmented in other ways to improve per-

formance over time; and

An analysis of common task types from the Taskbase Learning Platform
and the applicability of NLI to each task type.
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A Tables and Figures

This section provides full data tables and figures from Section 5 which are too
space-consuming to insert into the text body.
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B The Taskbase Homer dataset

This is a listing of the final Taskbase Homer dataset used in the Homer Simpson
Paradox experiment in Section 5.6 on page 60. The dataset is given in CSV
format. It includes every pair that was collected throughout the experiment.

The purpose of this dataset is not to provide a comprehensive benchmark
of the emergent behaviour of NLI models, but rather to demonstrate possible
failure cases for further in-depth study.

premise ,hypothesis ,entailment
Homer Simpson works at a nuclear power plant.,Homer Simpson works
at a nuclear power plant.
Homer Simpson parachutes at a nuclear power plant.,Homer Simpson
works at a nuclear power plant.
Homer Simpson eats a sandwich at a nuclear power plant.,Homer
Simpson works at a nuclear power plant.
Lisa works at a nuclear power plant and eats a sandwich with Homer
Simpson.,Homer Simpson works at a power plant.
Homer Simpson is a worker at a nuclear power plant.,Homer Simpson
works at a nuclear power plant.
Homer Simpson is a parachuter at a nuclear power plant.,Homer
Simpson works at a nuclear power plant.
Homer Simpson fdgfwnqgehfisf at a nuclear power plant.,Homer Simpson
works at a nuclear power plant.
Lisa Simpson works at a nuclear power plant.,Homer Simpson works at
a nuclear power plant.
Homer Simpson works at a solar power plant.,Homer Simpson works at
a nuclear power plant.
Lisa Simpson works at a solar power plant.,Homer Simpson works at a
nuclear power plant.
Homer Simpson works at a house plant.,Homer Simpson works at a
nuclear power plant.
Lisa Simpson works at a house plant.,Homer Simpson works at a
nuclear power plant.
Rhinos eat leaves that grow on trees.,Giraffes eat leaves that grow
on trees.
Specimens eat leaves that grow on trees.,Giraffes eat leaves that
grow on trees.
foobarbaz eat leaves that grow on trees.,Giraffes eat leaves that
grow on trees.
Giraffes admire leaves that grow on trees.,Giraffes eat leaves that
grow on trees.
Giraffes write leaves that grow on trees.,Giraffes eat leaves that
grow on trees.
Giraffes iurehe leaves that grow on trees.,Giraffes eat leaves that
grow on trees.
Giraffes eat twigs that grow on trees.,Giraffes eat leaves that
grow on trees.
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Giraffes eat empathies that grow on trees.,Giraffes eat leaves that

grow on trees.

Giraffes eat qwfhkmko that grow on trees.,Giraffes eat leaves that

grow
Giraffes
grow
Giraffes
grow
Giraffes
that
Giraffes
that
Giraffes
grow
Giraffes
grow

Usain

Usain

Usain
Usain
Usain
Usain
Usain
Usain
Usain

Usain

Bolt
Bolt

Bolt
Bolt
Bolt
Bolt
Bolt
Bolt
Bolt
Bolt

runs

runs

runs

runs

runs

runs

runs

runs

runs

runs

on trees.

on trees.

on trees.

on trees.

on trees.

at
at

at
at
at

eat leaves that

eat leaves that

eat leaves that
grow on trees.

grow on trees.

the
the

the
the
the

like a

like

like
like

a
like a
a
a

eat leaves that grow

eat leaves that grow

eat leaves that grow

speed
speed

speed
speed
speed
sloth.

fall on trees.,Giraffes eat leaves that

think on trees.,Giraffes eat leaves that

rwmxkjfhu on trees.,Giraffes eat leaves

on buildings.,Giraffes eat leaves

on ideas.,Giraffes eat leaves that

on nvjoiej.,Giraffes eat leaves that

of
of

of
of
of

a

a
a

sloth.,Usain Bolt runs quickly.
tortoise.,Usain Bolt runs quickly

snail.,Usain Bolt runs quickly.
cheetah.,Usain Bolt runs slowly.
cheetah.,Usain Bolt rumns quickly.

,Usain Bolt runs quickly.

tortoise.,Usain Bolt runs quickly.

snail.,Usain Bolt runs quickly.

cheetah.,Usain Bolt runs slowly.

cheetah.,Usain Bolt runs quickly.
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C Glossary

Closed-ended task Tasks which have a small space of correct answers that
can be easily verified by a machine. Examples of closed-ended tasks are
multiple-choice, fill-in-the-blank, or mathematics. See Task.

Compatibility See Neutral.

Contradiction A relationship between two texts A and B where B cannot
reasonably be true given A.

Correct class The set of student responses to a task which entail the correct
hypothesis. Not to be confused with the set of correct responses, as a
response may belong to the correct class as well as a mistake class.

Digital learning platform An always-available computer, online, or mobile
application that allows instructors to issue quizzes, assignments, exercises,
or tests to students, and allows students to participate in these activities
while possibly evaluating responses and/or giving feedback based on stu-
dent responses.

Entailment A relationship between two texts A and B where the meaning of
B can be inferred from the meaning of A.

Equivalence A relationship between two tets A and B where A entails B and
B entails A.

Formative feedback Feedback given during the learning process, meant to
change the way a student approaches a subject or to guide the student to
a particular though process during learning.

Hypothesis (NLI) One of the two texts provided to an NLI odel, the other
being the premise.

Hypothesis (task) A reference answer to a task. A correct hypothesis is a
reference correct answer; a mistake hypothesis is a reference incorrect

answer representing some mistake or misconception.

Mistake class The set of student responses to a task which entail a particular
mistake hypothesis, i.e. answers with the same mistake or misconception
as encoded in the mistake hypothesis.

Natural Language Inference (NLI) A subfield of Natural Language Pro-
cessing which deals with recognizing entailment relationships between
texts, that is, whether the truth of text A implies the truth of Text B.
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Natural Language Processing (NLP) A field of computing that deals with
handling human language.

Natural Language Understanding(NLU) A sub-field of Natural Language
Processing which deals with teaching a machine to understand the se-
mantics of human language. INLI is a crucial prerequisite to complete
Natural Language Understanding.

Neutral A relationship between two texts A and BB where the truth of B
cannot be totally inferred from the meaning of A; i.e. B may or may not
be true given A.

NLI See Natural Language Inference.

NLI model A mechanism that, given a premise text p and hypothesis text
h, determines if p entails, contradicts, or is compatible with h.

NLP See Natural Language Processing.
NLU See Natural Language Understanding.

Open-ended task Tasks to which students can respond in free-form text. Of-
ten there is more than correct answer and more than one way to formulate
them. Open-ended tasks require human intervention or very sophisticated
NLP techniques to correct them.

Premise (NLI) One of the two texts provided to an NLI model, the other one
being the hypothesis.

Response (task) A student’s answer to a task.

Task Within an assignment, exercise, test, or exam on a digital learning plat-
form, a task is a single question to which a student responds with a single

answer.
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