
SJS-JFE: A Java Frontend for Scala.js

Martin Hanzel
313710

Supervised by

Sébastien Doeraene

Submitted

June 2020

Abstract

This report presents SJS-JFE, a Java compiler that targets the Scala.js
IR. Java programs compiled with SJS-JFE can run on the Scala.js plat-
form and link with other Scala.js code written in either Java or Scala.
This interoperability opens up the possibility of using Java libraries in
Scala.js projects, greatly widening the Scala.js ecosystem.

1

Contents

1 Introduction 4
1.1 Motivation . 4
1.2 Example Program . 5
1.3 Design Decisions . 6
1.4 Limitations and Challenges . 7

2 Translation 9
2.1 High-level Structure Rules . 10

2.1.1 Class Generation . 10
2.1.2 Instance Fields . 11
2.1.3 Constructors . 11
2.1.4 Statics . 12
2.1.5 Access Control and Namespacing 14
2.1.6 Methods . 14
2.1.7 Generics . 15

2.2 Statements . 15
2.2.1 Assertions . 15
2.2.2 Blocks . 15
2.2.3 Break and Continue . 16
2.2.4 (Super)Constructor Invocation 16
2.2.5 Do-While . 16
2.2.6 Empty Statements . 17
2.2.7 Enhanced for Loops . 17
2.2.8 Expression Statements . 17
2.2.9 for Loops . 17
2.2.10 if Statements . 18
2.2.11 Labeled Statements . 18
2.2.12 return Statements . 18
2.2.13 switch Statements . 19
2.2.14 Synchronized Blocks . 20
2.2.15 Throw Statements . 20
2.2.16 Try/Catch/Finally . 21
2.2.17 Type Declarations . 21
2.2.18 Variable Declarations . 21
2.2.19 while Loops . 22
2.2.20 yield Statements . 22

2.3 Expressions . 22
2.3.1 Annotations . 22
2.3.2 Array Accesss . 22
2.3.3 Array Creation . 23
2.3.4 Array Initializer . 23
2.3.5 Assignments . 23
2.3.6 Casts . 24
2.3.7 Class Instance Creation 24
2.3.8 Conditional (Ternary) Expressions 24
2.3.9 Creation References . 24
2.3.10 Expression Method References 24
2.3.11 Field Access . 25

2

2.3.12 Infix Expressions . 25
2.3.13 Instanceof Expressions . 26
2.3.14 Lambda Expressions . 26
2.3.15 Literals . 26
2.3.16 Method Invocations . 27
2.3.17 Parenthesized Expressions 27
2.3.18 Postfix Expressions . 27
2.3.19 Prefix Expressions . 28
2.3.20 Qualified and Simple Names 28
2.3.21 Switch Expressions . 29
2.3.22 this Expressions . 29
2.3.23 Type Literals . 29
2.3.24 Type Method References 29
2.3.25 Variable Declaration Expressions 30

2.4 Testing transformations . 30

3 Conclusion and Future Directions 31

3

1 Introduction

Scala.js1 is a dialect and compiler for the Scala language that targets JavaScript
platforms. Scala.js can compile a Scala program into an optimized JavaScript
program that can be run on server-side JS engines (like Node.js), as well as
browsers. It also provides bindings to JavaScript APIs so that a Scala.js program
can interact with the browser or the runtime as a first-class JavaScript program
could.

Scala.js applications can take advantage of Scala language features — for
instance, strong typing, correctness guarantees, and a comprehensive standard
library — which vanilla Javascript lacks. This gap is being rapidly closed by
alternative languages such as Typescript2, though Scala arguably remains more
powerful, with a better type system and more language features than competing
languages.

Scala.js is introduced and described in Sébastien Doeraene’s PhD thesis [1].
The reader of this report is assumed to have at least a basic knowledge of Scala.js
and its IR.

1.1 Motivation

Scala.js programs are written in Scala, and can interoperate with JavaScript
code and a subset of the Scala standard library. A subset of the Java standard
library is also supported, having been re-implemented in Scala. However, there
is no facility to call Java code (either from source or from bytecode), meaning
that a Scala.js application cannot exploit the extensive Java ecosystem.

This void is filled by SJS-JFE (Scala.js-Java Frontend, for lack of a bet-
ter name), a standalone compiler based on the Eclipse Java Development Tools
(JDT)3. SJS-JFE transforms Java source code to the Scala.js intermediate lan-
guage so that it may be linked with other Scala.js code and finally transformed
into JavaScript.

SJS-JFE receives as input a Java source file, which is processed in two stages.
In the first stage, SJS-JFE invokes the JDT compiler, which parses the source,
checks the code for errors, and finally generates one or more ASTs represent-
ing all top-level declarations in the source file. In the second stage, SJS-JFE
transpiles a JDT AST into Scala.js IR. This IR, stored on disk in files with the
.sjsir extension, is somewhat an analogue of bytecode in the JVM world.

After an IR file is generated, it can be linked with other IR files using the
Scala.js compiler to assemble more complex programs. Notably, it is possible to
link IR files compiled from Java sources with ones compiled from Scala sources.
The major consequence of this is that Scala programs are able to utilize Java
libraries by compiling the library’s sources to Scala.js IR, greatly increasing the
size of the Scala.js ecosystem.

SJS-JFE implements a one-pass, recursive transpiler. Its job is greatly sim-
plified by the fact that the Scala.js IR class model is quite similar to Java’s. Ex-
cepting some structural changes to the top-level declarations, much of Scala.js
IR code mirrors its Java equivalent quite closely.

1http://www.scala-js.org/
2https://www.typescriptlang.org/
3https://www.eclipse.org/jdt/

4

SJS-JFE assumes that the source code it receives as input is correct — if it
is not, the JDT compiler will detect and indicate errors in the first stage, and
fail early. Thanks to this precaution, the second stage transpiler does not need
to deal with any error-checking, and focus on emulating Java’s semantics.

This report frequently references the Java Language Specification, version
14 [2]. The curious reader is encouraged to have it at hand to better understand
the details of Java semantics.

The source code to SJS-JFE is available on GitHub4.

1.2 Example Program

An example is worth a thousand words. Consider the following “Hello World”
program in Java:

class Main {

String name = "anonymous";

public Main(String name) {

this.name = name;

}

public void print(String[] args) {

System.out.println(name + " says:");

for (int i = 0; i < args.length; i++)

System.out.println(args[i]);

}

public static void main() {

new Main().print(new String[] { "Hello", "Scala.js" });

}

}

SJS-JFE compiles it to this Scala.js IR:

class Main extends java.lang.Object {

var name: java.lang.String

def print;[Ljava.lang.String;V(args: java.lang.String[]) {

_return_0: {

java.lang.System::out;Ljava.io.PrintStream()

.println;Ljava.lang.String;V(

(this.Main::name +[string] " says:")

);

var i: int = 0;

_break_0: {

while ((i <[int] args.length)) {

_continue_0: {

java.lang.System::out;Ljava.io.PrintStream()

.println;Ljava.lang.String;V(args[i])

};

i = (i +[int] 1)

}

}

}

}

static def main;V() {

_return_1: {

4https://github.com/arthanzel/scalajs-jfe

5

new Main().<init>;Ljava.lang.String;V("SJS-JFE")

.print;[Ljava.lang.String;V(

java.lang.String[]("Hello", "Scala.js")

)

}

}

constructor def <init>;Ljava.lang.String;V(

name: java.lang.String) {

this.java.lang.Object::<init>;V();

this.Main::name = "anonymous";

this.Main::name = name

}

}

Some lines were wrapped to fit the code on the page.
The IR representation is definitely more verbose, but from this example, we

can note a few things right away:

• Methods, including constructors, declare their full signature, including
parameter and return types, in the name. This is a feature of Scala.js
that allows method overloading in JavaScript.

• The for loop is converted into a while.

• Constructors explicitly call the default super-constructor.

• Instance fields are initialized in the constructor, instead of in their decla-
ration.

Chapter 2 describes all of these transformations, and more, that are applied
when converting Java source code to Scala.js IR.

1.3 Design Decisions

We considered two possibilities: building a compiler that takes Java source
code as input, or one that takes JVM bytecode. Both options have benefits and
drawbacks:

• A bytecode frontend could feasibly support not only Java, but other lan-
guages compiling to JVM bytecode as well: for example Kotlin, and Clo-
jure. JVM bytecode is quite primitive, and eliminates tricky constructs
that can appear in source code, like nested classes, closures, and any
syntactic-sugar constructs such as for-in loops. On the other hand, the
low-level nature of bytecode makes it difficult to analyze. Generic type
information is lost due to type erasure. Further, the JVM bytecode is
much more low-level than the Scala.js IR and there is not necessarily a
clean way to map bytecode instructions to Scala.js — any attempt to
transform bytecode to Scala.js IR runs the risk of producing Yet Another
JVM Implementation.

• A source code frontend is limited to consuming Java programs, but its
task would be much simpler. The Scala.js IR is conceptually similar to the
Java language model, and many concepts have a one-to-one counterpart.
Full type information is retained, including erasures, parameterized type

6

bounds, and original types of erasures at the site of usage. Language-level
optimizations may be performed. Static analysis and data flow analysis
can be applied. If a sufficiently-advanced Java parser is used, transform-
ing Java source to the Scala.js IR becomes a matter of transforming one
structured AST into another. If the source code is not available, JVM
bytecode may be first decompiled into Java and then transformed into the
Scala.js IR (assuming that the proper libraries are present and that the
bytecode is compliant to the JVM specification).

SJS-JFE takes the latter option — it consumes Java source code. This path
was chosen as it is the simpler of the two, and naturally, the path of least
resistance is desirable for writing a proof-of-concept program. In the future,
we’d like to explore the possibility of a bytecode compiler as well.

Recall, the first stage of SJS-JFE is to parse the Java source into an AST
and check it for errors. The Eclipse JDT5 suite was chosen as the first-stage
compiler since it is a mature, full-featured, and battle-tested compiler suite. Its
benefits are numerous:

• JDT is available under the permissive Eclipse Public License, unlike the
OpenJDK project, which is licensed under the GPL. SJS-JFE merely in-
terfaces with JDT and is not a derivative work, making JDT compatible
with the Apache 2.0 license of Scala.js.

• JDT is the default compiler and toolchain for Java projects in the Eclipse
IDE, giving it an excellent track record.

• JDT has flexible configuration and exposes its internals. It can return
fully-generated or partially-generated ASTs. In contrast, the javac API
is opaque, poorly-documented, and less full-featured.

• JDT resolves type/method/variable bindings and provides comprehensive
information about types, including erasures for parameterized types.

1.4 Limitations and Challenges

Language features The current state of SJS-JFE supports the majority of
Java’s language features — certainly enough to write reasonably complex pro-
grams. Some features are not yet implemented or well-tested, chiefly: try-catch
blocks, lambda expressions, anonymous classes, local classes, switch expres-
sions, and enhanced for loops.

Implementing the remaining Java language features is a priority, but Java is a
complex language with many language features that interact in non-trivial ways.
For example, a concept as fundamental as implicit value conversions (JLS14 §5)
has many pages of rules, preconditions, and contexts dictating where it can and
cannot be applied. The PDF of the Java 6 Language Specification6 comprises
nearly 700 pages. The PDF of the Java 14 Language Specification7 has nearly
800!

5SJS-JFE uses JDT version 3.21.0
6https://docs.oracle.com/javase/specs/jls/se6/jls3.pdf
7https://docs.oracle.com/javase/specs/jls/se14/jls14.pdf

7

Java API Scala.js supports only a subset of the Java standard library, which
is re-implemented from scratch8. Since Scala.js code is eventually run in a
JavaScript environment (including browsers), JVM-specific or server-specific
functionality is unsupported. Among these missing features are reflection, file-
system operations, compile-time annotations, and concurrency, for example.

Naturally, any Java standard library functionality that cannot be emulated
using the JavaScript standard library is unsupported.

DOM API Scala.js allows Scala code to interface with JavaScript APIs, in-
cluding the JS standard library and the DOM API on browsers, through a set of
native bindings. SJS-JFE provides no similar functionality at this time, so Java
code cannot access JS APIs. Consequently, SJS-JFE does not yet enable Java
to be used as the primary language for developing useful, real-world Scala.js
programs.

8see the javalib and javalanglib modules in the Scala.js main repository

8

2 Translation

This section describes the various rules that are applied to transform a JDT AST
to the Scala.js IR. A thorough introduction to the Scala.js IR is not included;
for that, refer to the original thesis [1], or peruse the Scala.js source code9.
The differences between Java and Scala.js semantics will be explained wherever
relevant, but the reader should not take this as a guide to Scala.js — rather,
as a manual of how the JDT model maps to Scala.js. Consequently, a basic
understanding of the Scala.js IR is assumed, or at least a decent knowledge
of ASTs and tree-based compilers. Several code examples include listings of
pretty-printed Scala.js IR. The reader is assumed to be familiar with reading
Scala.js IR code.

JDT AST classes live in the org.eclipse.jdt.core.dom package. Through-
out this report, JDT classes may be referred to using the shorthand
jdt.<ClassName>.

There are three main types of translation rules that SJS-JFE applies to a
JDT AST to transform it into Scala.js IR:

1. High-level structure rules. These rules deal with assembling class
definitions and top-level members like methods, fields, and static initializ-
ers. High-level structure rules are the most complicated, since they must
adapt the public interface of a Java class to match Scala.js semantics.
Among some problems that these rules must solve are generation of im-
plicit constructors, synthetic accessors, static initialization, and handling
of lexically enclosing scopes.

2. Statement rules. These rules correspond to Java statements. State-
ments may appear only within initializers or methods, and do not affect
the overall structure of the class. Statements may wrap expressions.

3. Expression rules. These rules correspond to Java expressions. Expres-
sions are treated as a special case because they may contain additional
expressions and may even appear in a statement position.

A remark on notation: Throughout this chapter, listings are provided to
summarize the transformation rules that SJS-JFE applies to a JDT AST to
produce Scala.js IR. They take the following form:

[[javaPattern]] := scalajsPattern

Elements inside [[double square brackets]] are transformed by SJS-JFE
into Scala.js IR, that is, [[X]] maps a JDT tree X to a Scala.js IR. On the
left-hand side of the := appear pseudocode representations of the JDT AST.
On the right-hand side are pseudocode representations of the Scala.js IR. They
are not equivalent. For example, consider the following transformation:

[[if (cond) { thenP } else { elseP }]] :=

if ([[cond]]) { [[thenP]] } else { [[elseP]] }

9https://github.com/scala-js/scala-js — the org.Scala.js.ir.Trees object contains all
nodes in the IR

9

This encodes a very basic transformation from a Java if-else statement
to the corresponding if-else node in the Scala.js IR. The if on the left-hand
side corresponds to a JDT if node, while the one on the right corresponds to
its Scala.js IR counterpart.

For the most part, Scala.js IR is shown as it would be printed by the compiler.
However, sometimes certain details may be omitted (like type information in
method names) for the sake of brevity.

2.1 High-level Structure Rules

When JDT parses a Java source file, it returns an instance of
jdt.CompilationUnit containing zero or more instances of
jdt.AbstractTypeDeclaration. An AbstractTypeDeclaration can declare
an annotation, enum, interface, or class.

• Scala.js does not support annotations, so SJS-JFE ignores annotation dec-
larations entirely.

• Enums are not supported yet by SJS-JFE.

• Classes and interfaces are both instances of jdt.TypeDeclaration, and
are processed in a similar fashion. Interfaces are not yet tested, however,
they are treated in the same way as classes. Empty interface methods and
abstract methods are defined as regular methods with an undefined body.

A source file may define many types, either at the top-level or nested within
another type. Each type declaration is treated and emitted individually, similar
to how all type declarations, nested or otherwise, appear in their own .class

files.

2.1.1 Class Generation

When SJS-JFE encounters a class definition, it performs the following transfor-
mations:

• If the class does not explicitly name a superclass, set the superclass to
java.lang.Object.

• If the class does not declare any constructor, create a default zero-arg
constructor.

• If the class does declare constructors, add to them synthetic code to ini-
tialize the class, its instance members, and any statics.

• If the class is an inner class, add a field holding a reference to the lex-
ically enclosing instance and amend constructors to receive and set this
reference.

• Process and generate fields. If the class declares static fields, generate
synthetic getters and setters.

• If the class declares static fields or static initializers, generate a synthetic
method to carry out static initializations in order.

10

• Process and generate methods.

• If the class declares inner types, process them recursively.

• The name of the class is set to its JVM binary name.

SJS-JFE returns a collection of Scala.js ClassDef instances for the root class
and any inner class.

2.1.2 Instance Fields

A class may declare zero or more instance fields as members. One significant
difference between the Java and Scala.js models is that Java fields are allowed
to include a value to use as an initializer, whereas Scala.js does not. In Scala.js,
instance fields must be set to their proper values in constructors.

Another difference is that a Java field declaration may declare multiple vari-
ables (“fragments”) of the same type. Each fragment may have a different initial
value, for example, int a = 1, b = 2;. Scala.js requires that each fragment
become its own field declaration.

When SJS-JFE encounters a Java field declaration, it splits each fragment
into its own declaration and constructs a Scala.js FieldDef node. Initializers
are emitted during constructor generation.

2.1.3 Constructors

Java implicitly creates a blank, zero-arg constructor if a class does not declare
any constructors and the superclass is implicitly constructable (i.e. it either
has an implicit constructor or an explicit zero-arg constructor). Scala.js re-
quires that all constructors be explicit, therefore SJS-JFE generates a default
constructor if needed.

Default constructor: The default constructor is quite simple. It performs
only four major tasks:

1. If the class is a nested class, store a reference to the enclosing instance in
a synthetic field from a parameter.

2. Call the default super constructor. This call is necessary to ensure that
any fields from superclasses are initialized.

3. If the class declares static fields or initializers, call the static initialization
routine (see section 2.1.4, and the note below).

4. Set instance fields to their initial values.

In fact, generating a default constructor in the IR is equivalent to inserting
a blank zero-arg constructor in the JDT AST, and processing it as an explicit
constructor. However, it is inconvenient to create synthetic AST elements with
the proper binding information, so implicit constructors are treated separately.

Note: The current state of SJS-JFE does not perform static initialization in
the correct order with respect to super-constructor calls. The correct behaviour
is for all classes and subclasses to be statically initialized, starting from the

11

base class, before any constructor executes. In the current implementation,
static initializers are called alongside their class’s constructor, starting from the
base class. Normally, this is not an issue unless the classes have static initializers
and constructors with side-effects that are sensitive to their order of execution.
The reason for this is that classes cannot know whether their superclass has a
static initialization routine, so the only way for a class’s static initializer to be
called reliably is from the class itself — for example from the constructor.

Explicit constructors. If a class contains explicit constructors, no default
constructor is created and all explicit constructors are augmented by prepending
some synthetic code to the body, if necessary:

1. If the class is a nested class, store a reference to the enclosing instance in
a synthetic field from a parameter.

2. If the explicit constructor explicitly calls a super constructor and the su-
perclass is a nested class, amend the super constructor call with a reference
to the appropriate enclosing instance.

3. If the explicit constructor call no other constructor, generate a call to the
default super constructor, passing a reference to the appropriate enclosing
instance if applicable.

4. If the class declares static fields or initializers, call the static initialization
routine (see section 2.1.4).

5. If the constructor is a top-level constructor, set instance fields to their
initial values.

One difference between Java and Scala is worth noting here. In Scala, classes
are guaranteed to have a single primary constructor. That is, there must exist
one constructor that is called no matter how the class is instantiated — all
auxiliary constructors must either call the primary or another auxiliary con-
structor. In Java, there may exist several “top-level” constructors, which either
call a super-constructor as their first statement, or call no constructor explic-
itly (therefore implicitly invoking the zero-arg super constructor). Initialization
code, like the setting of instance fields, must be duplicated in all top-level con-
structors so that it is guaranteed to be run. A future optimization may be to
extract this initialization code into a synthetic method, if the goal is to minimize
the size of the IR.

2.1.4 Statics

A major difference between Java and Scala is their representation of statics. In
Scala, “static” members are declared in a companion object, which is effectively
a singleton containing instance members. Indeed, in Scala.js, companion objects
are compiled into modules, a kind of object that wraps a singleton. However,
for interoperability with Java, the Scala.js IR has support for static members.
Static fields and methods can be declared with a “static” flag, and are accessed
with specialized AST nodes. The declaration of static members is not an issue
in Scala.js.

12

Recall from section 2.1.2 that Scala.js field declarations may not set their
initial value — this is done in the constructor. Scala.js modules do support a
constructor-like method that instantiates the singleton and sets initial values.
But there is no “static constructor” equivalent for classes. So where are static
fields supposed to be initialized?

A related concern is that of static initializers. A Java class may declare zero
or more static initializers, contained within static { } blocks, that perform
one-time tasks whenever (roughly) the class is first referenced. Static initializers
may overwrite fields or perform other (expensive) side-effects, so calling them
at the right time is important to preserve Java semantics. Therefore, doing
static initialization for all classes when the program is loaded would be naive
and wasteful.

A class is initialized immediately before it is instantiated, one of its static
methods is invoked, one of its static fields is written, one of its non-final static
fields is read, or a subclass is initialized (JLS14 §12.4.1). SJS-JFE hooks onto
these events by creating synthetic accessors for each static field, where the ac-
cessors call a synthetic initializer method. The synthetic initializer is guarded
by another synthetic field to ensure that the method is called at most once. The
role of the synthetic initializer is to perform all static initialization code and set
all static variables, in the order in which they appear in the source.

If a static field is read or written elsewhere in the code, it is accessed through
the appropriate getter or setter, respectively.

Consider the following class:

class MyClass {

static int test = 10;

static { System.out.println("init"); }

}

This is the IR that SJS-JFE would emit:

class Main extends java.lang.Object {

static var test: int

static def test;I(): int = { // Getter

Main::$sjsirStaticInitializer_0;V();
Main::test

}

static def test_$eq;I;V(value: int) { // Setter

Main::$sjsirStaticInitializer_0;V();
Main::test = value

}

static var $sjsirStaticCalled_0: boolean

static def $sjsirStaticInitializer_0;V() {

if ((!Main::$sjsirStaticCalled_0)) {

Main::$sjsirStaticCalled_0 = true;

Main::test = 10;

java.lang.System::out;Ljava.io.PrintStream()

.println;Ljava.lang.String;V("init")

}

}

// Default constructor omitted

}

Static methods require no further processing, except to call the static ini-

13

tializer at the top of the method.
Note: Reads of static final fields should not trigger a static initialization

(JLS14 §12.4.1), but they do in SJS-JFE since it does not treat static final
fields as special at this time. Also, it is impossible at this time to trigger static
initialization of a superclass outside of a constructor invocation as a class’s
static initializer cannot be reliably accessed from outside the class (see the note
in section 2.1.3).

Note: Implementing statics in SJS-JFE revealed a bug10 in the Scala.js
version 1.0.1 compiler where static fields were eliminated by the optimizer. The
workaround is to disable the optimizer. This bug is fixed in future versions of
Scala.js.

2.1.5 Access Control and Namespacing

The Scala.js IR has two “access modifiers”: private and public. These mod-
ifiers don’t necessarily enforce access control, rather, they namespace member
definitions into private and public namespaces. For example, a method call on
a private method is invalid unless the call indicates the private namespace.

Since JDT checks the validity of the Java program to compile, SJS-JFE does
not need to enforce access control. Nevertheless, private methods are dispatched
differently than public ones, and so private methods must be put in the private
namespace. Protected, package-protected, and public methods are emitted in
the public namespace.

2.1.6 Methods

Methods are transformed into MethodDef nodes in the Scala.js IR. Public, pro-
tected, and package-protected instance methods are invoked using the Apply

IR instruction. Private methods are invoked using ApplyStatically. Static
methods are invoked using the ApplyStatic instruction instead of Apply.

The Scala.js IR does not provide a classical return statement as Java does.
Rather, it has a more flexible node, a labeled return, that takes the name of
a labeled block and steps out of that block, optionally returning a value if the
labeled block is used as an expression. It is possible to use a labelled return to
simulate returning from a method by wrapping the method body in a labeled
block. Indeed, SJS-JFE wraps all but the simplest methods in a labeled block:

Java method

int meaningOfLife() {

// ...some code

return 42;

}

Scala.js IR equivalent

def meaningOfLife;I(): int = {

returnScope[int]: {

// ...some code

return@returnScope 42

}

}

returnScope is a labelled block with a unique name for every method.
If a Java method consists of just a single return, SJS-JFE omits the labelled

block and simply uses the return expression:

10https://github.com/scala-js/scala-js/issues/4021

14

Java method

int meaningOfLife() {

return 42;

}

Scala.js IR equivalent

def meaningOfLife(): int = {

42

}

2.1.7 Generics

The Scala.js IR has no concept of generics and uses erased types wherever
parameterized types appear. Whenever a value with a generic type is retrieved,
it must be cast first to the expected type. This occurs at method invocations,
variable references, or field references.

JDT provides type information for erasures, as well as the true bound type
of any variable, field, or method whenever it is used. If the returned erased type
does not equal the bound type, then the value is wrapped in a cast expression.

2.2 Statements

Statements in JDT extend the jdt.Statement abstract class. Statements ap-
pear in block bodies, and can wrap expressions.

2.2.1 Assertions

JDT class: org.eclipse.jdt.core.dom.AssertStatement

Assert statements are Boolean assertions made using the assert keyword.
The Scala.js IR does not support assertions itself, but assertions can be

supported by checking the assertion condition and raising an AssertionError

if it is false.
The semantics of assertions requires some consideration on how to imple-

ment them. Normally, assertions are enabled on the JVM by passing the -ea

command-line flag, but compiling Java to the Scala.js IR raises more questions.
Should assertions be omitted by default from the emitted IR? Should they be
guarded by a flag that can be set at runtime? Should third-party libraries ship
with assertions enabled or disabled? It is not clear which solution maximizes
compatibility between existing Scala and Java libraries, and for this reason,
SJS-JFE does not emit assert statements.

The transformation for assertions would look like:

[[assert condition]] :=

if ((![[condition]]))

[[throw new java.lang.AssertionError()]]

2.2.2 Blocks

JDT class: org.eclipse.jdt.core.dom.Block

A block in JDT is a container for zero or more statements. JDT blocks map
directly to the Block node in the Scala.js AST.

Scala.js blocks are expressions and have a type associated with them. The
last statement or expression in a block is its value. This will play a role in some
transformations, such as assignments, that carry out a side-effect and generate
a value.

15

2.2.3 Break and Continue

JDT classes: org.eclipse.jdt.core.dom.BreakStatement
org.eclipse.jdt.core.dom.ContinueStatement

Scala.js does not provide neither break nor continue nodes in the IR, but
the semantics of these statements are very similar to those of the labeled return

statement. A labeled return serves to immediately break out of an enclosing
labeled block, optionally returning a value. Wherever a break or continue can
be used, it is possible to create a labeled block and use a labeled return to exit
out of it. Here is a silly example with a while loop and how a labeled return

can be used to emulate a break:

With break:

while (true) {

if (Math.random() < 0.1)

break

}

With labeled return:

breakScope: {

while (true) {

if (Math.random() < 0.1)

return@breakScope

}

}

When not given a label, break and continue exit the nearest break-able or
continue-able scope, respectively.

When given a label, break and continue exit the same-labeled block. Cur-
rently, named breaks work everywhere, but named continues are implemented
only for for loops.

2.2.4 (Super)Constructor Invocation

JDT classes: org.eclipse.jdt.core.dom.ConstructorInvocation
org.eclipse.jdt.core.dom.SuperConstructorInvocation

Constructor invocations refer to invocations of a constructor from another
constructor of the same class. Super constructor invocations refer to invocations
of a super constructor from the extending class’s constructor. Section 2.1.3
summarizes how SJS-JFE transforms constructors.

2.2.5 Do-While

JDT class: org.eclipse.jdt.core.dom.DoStatement

do-while loops map more or less directly to the DoWhile node in the Scala.js
IR. Two labeled statements must be inserted to support break and continue.
The transformation is:

[[do { body } while (condition))]] :=

breakScope: {

do {

continueScope: {

[[body]]

}

} while ([[condition]])

}

breakScope and continueScope are synthetic labeled blocks with unique
label names. See section 2.2.3.

16

2.2.6 Empty Statements

JDT class: org.eclipse.jdt.core.dom.EmptyStatement

Empty statements (no-ops) map directly to a Skip node in the Scala.js IR.
Skip nodes simply emit a /* comment */ in the Javascript that is removed by
the Scala.js optimizer.

2.2.7 Enhanced for Loops

JDT class: org.eclipse.jdt.core.dom.EnhancedForStatement

Enhanced for loops are ones that contain an Iterable or array, like
for (x : iterableOrArray) {}.

SJS-JFE does not yet implement enhanced for loops.

A hypothetical transformation for an array iteration:

[[for (Type x : array) { body }]] :=

[[for (int $i = 0, Type[] $a = array; $i < $a.length; $i++) {

// $i, $a must be fresh names

Type x = $a[$i];
body;

}]]

A hypothetical transformation for an Iterable iteration:

[[for (Type x : iterable) { body }]] :=

[[for (Iterator<Type> $i = iterable.iterator(); $i.hasNext();) {

// $i must be a fresh name

Type x = $i.next
body;

}]]

These transformations are similar to how enhanced for are compiled to JVM
bytecode.

See section 2.2.9 for the transformation rule for for loops.

2.2.8 Expression Statements

JDT class: org.eclipse.jdt.core.dom.ExpressionStatement

Expression statements wrap an instance of jdt.Expression that occurs in
a statement position. See Section 2.3 for treatment of expressions.

2.2.9 for Loops

JDT class: org.eclipse.jdt.core.dom.ForStatement

Scala.js provides no way to express traditional for loops as in Java. There-
fore, they must be transformed to a while loop. A for loop has four compo-
nents: a list of initializers, a condition, a list of updaters, and a body. SJS-JFE
transforms a for loop like so:

[[for(initializers; condition; updaters) { body }]] := {

[[initializers]]

breakScope: {

while ([[condition]]) {

17

continueScope: {

[[body]]

}

[[updaters]]

}

}

}

breakScope and continueScope are synthetic labeled blocks with unique
label names. See section 2.2.3.

If the for statement is nested immediately inside a labeled statement, the
labels for breakScope and continueScope are marked with the label’s name.
Then, break and continue statements appearing inside can refer to the labelled
block by name. For example:

Java code:

FOO: for (; true;) {

break FOO;

}

Scala.js IR:

_namedbreak_FOO: {

while (true) {

_namedcontinue_FOO: {

return@_namedbreak_FOO (void 0)

}

}

}

2.2.10 if Statements

JDT class: org.eclipse.jdt.core.dom.IfStatement

if statements map directly to the If node in the Scala.js IR.
Like Scala.js, JDT expresses chains of else if by nesting them within the

previous else. Unlike Scala.js, JDT does not ensure that the else block is
present. If it is absent, a Scala.js Skip node (a no-op) is inserted into the body
of the else.

The If node in the Scala.js IR may return a value like an expression, making
it behave more like a ternary conditional. In the case of an if statement, this
value is ignored.

2.2.11 Labeled Statements

JDT class: org.eclipse.jdt.core.dom.LabeledStatement

Labeled statements map directly to the Labeled node in the Scala.js IR. In
Scala.js, these nodes may produce a value, like expressions, but in this case the
value is ignored.

If a labeled statement’s body is a loop, then the break and continue scopes of
the loop are marked with the label’s name. Currently, this is only implemented
for for loops. See section 2.2.9 for an example.

2.2.12 return Statements

JDT class: org.eclipse.jdt.core.dom.ReturnStatement

return statements in Java exit out of the nearest method or lambda expres-
sion with an optional value. Just like break (see section 2.2.3), it is possible to

18

emulate this behaviour using labeled return statements in the Scala.js IR. A
prerequisite is that every method, function, or lambda must wrap its body with
a labeled block of the same name as the return, like so:

def someMethod() {

returnScope: {

return@returnScope someValue

}

}

The label of returnScope is unique for every method, function, or lambda.
If a method contains only a single return statement in its body, the labeled

block is omitted and the method’s body becomes the return expression (see
section 2.1.6).

If no return value is specified (i.e. returning a void), undefined is returned
instead.

2.2.13 switch Statements

JDT class: org.eclipse.jdt.core.dom.SwitchStatement

SJS-JFE supports only label-style switch cases like case 0:, not rule-style
cases like case 0 -> introduced in Java 12. The reason for this is that the
current version of JDT hides rule-style cases behind a preview flag, which is
disabled by default and changes some semantics of the compiler when enabled.

switch blocks are somewhat difficult to parse. JDT includes a
SwitchStatement class that encapsulates the body of a switch block, but its
body is not hierarhical — cases and their statements exist in a flat list, so the
first order of business is to parse a switch block into a list of cases, where each
case contains a list of statements belonging to it.

Once this data structure is created, each case maps roughly to an if. The
expression of the switch statement is evaluated, stored in a temporary variable,
then zero or more if-else blocks are emitted that check equality of the tem-
porary variable to the case expression. A temporary variable is used to ensure
that side-effects are performed at most once. The entire construct is wrapped
in a labeled block so that a break statement may exit the entire switch at any
point.

Fallthrough is implemented by storing a second temporary variable, initially
set to false. Whenever a case is entered, the fallthrough variable is set to true,
unless the case certainly terminates. A case is entered if the switch expression
equals the case expression, or if the fallthrough flag is set. Therefore, once a
case is entered, all following cases will be entered unless control exits the switch
in some way.

A possible optimization that can be made is transforming the switch state-
ment into a Match in the emitted IR if there is no fall-through, though this is
not implemented yet.

Here is an example of a switch statement with integers compiled by SJS-
JFE:

19

Java:

switch (i % 2) {

case 0:

log("even");

break;

case 1:

log("odd");

default:

log("fallthrough");

}

Scala.js IR:

_break_1: {

val $e: int = (i %[int] 2);

var $fall: boolean = false;

if (($fall || $e === 0)) {

log("even");

return@_break_1 (void 0)

};

if (($fall || $e === 1)) {

$fall = true;

log("odd")

};

if (($fall || true)) {

$fall = true;

log("fallthrough")

}

}

(Some syntactic details were omitted to fit the
listing in its column)

2.2.14 Synchronized Blocks

JDT class: org.eclipse.jdt.core.dom.SynchronizedStatement

Javascript is single-threaded, therefore synchronized statements have little
effect. However, a synchronized block must take an expression for the lock
to acquire. Evaluating the expression may also trigger side-effects. If the ex-
pression evaluates to null, a NullPointerException must be thrown (JLS14
§14.19). This condition must be checked at runtime.

The transformation rule for synchronized statements is:

[[synchronized (expression) { body }]] := {

val sideEffect: <typeof expression> = [[expression]]

// sideEffect is a fresh name

if ((sideEffect === null)) {

throw new java.lang.NullPointerException().<init>;V()

} else {

[[body]]

}

}

2.2.15 Throw Statements

JDT class: org.eclipse.jdt.core.dom.ThrowStatement

throw statements more or less map directly to the Throw node in the Scala.js
IR, though their utility is limited since SJS-JFE does not yet implement try/catch
statements. If the expression of a throw statement evaluates to null¸ a
NullPointerException must be thrown. This condition must be checked at
runtime.

The transformation rule for throw statements is:

[[throw expression]] := {

20

val sideEffect: <typeof expression> = [[expression]]

// sideEffect is a fresh name

if ((sideEffect === null)) {

throw new java.lang.NullPointerException().<init>;V()

} else {

throw sideEffect

}

}

2.2.16 Try/Catch/Finally

JDT class: org.eclipse.jdt.core.dom.TryStatement

SJS-JFE does not yet implement try-catch-finally statements. Scala.js
does provide TryCatch and TryFinally IR nodes.

Here is a hypothetical transformation for try-catch-finally:

[[try { tryBody }

catch (ExceptionType e) { catchBody }

// possibly more catches

finally { finalizer }]] :=

try {

[[tryBody]]

} catch {

if ((e.isInstanceOf[ExceptionType])) {

[[catchBody]]

} else {

// Handle other catches

}

} finally {

[[finalizer]]

}

The try-catch-finally construct is expressed in IR nodes like so:

TryFinally(

TryCatch(

[[tryBody]],

[[catches]]

),

[[finalizer]]

)

2.2.17 Type Declarations

JDT class: org.eclipse.jdt.core.dom.TypeDeclarationStatement

Type declaration statements represent local (not class-level) definitions of
classes or enums. SJS-JFE does not yet implement local type declarations, due
to non-trivial handling of captures.

2.2.18 Variable Declarations

JDT class: org.eclipse.jdt.core.dom.VariableDeclarationStatement

21

Variable declarations represent declarations and initializations of local vari-
ables (not fields) in a statement position. Variable declaration expressions also
exist; see section 2.3.25.

Java allows several variables of the same type to be declared and initialized
in the same statement, for instance: int i = 0, j = 1. Each “fragment”
contains a name and optionally an initializer, and one VarDef IR node is emitted
per fragment.

2.2.19 while Loops

JDT class: org.eclipse.jdt.core.dom.WhileStatement

while loops map more or less directly to the While node in the Scala.js IR.
Two labeled statements must be inserted to support break and continue. The
transformation is:

[[while (condition) { body }]] :=

breakScope: {

while([[condition]]) {

continueScope: {

[[body]]

}

}

}

breakScope and continueScope are synthetic labeled blocks with unique
label names. See section 2.2.3.

2.2.20 yield Statements

JDT class: org.eclipse.jdt.core.dom.YieldStatement

yield statements are not yet implemented in SJS-JFE.

2.3 Expressions

Expressions may contain other expressions, and generally represent a value. If
an expression is a block-like element such as a lambda or anonymous class, it
may contain other statements as well.

2.3.1 Annotations

JDT class: org.eclipse.jdt.core.dom.Annotation

SJS-JFE does not support annotations. When it encounters an annotation
expression, it emits a no-op.

2.3.2 Array Accesss

JDT class: org.eclipse.jdt.core.dom.ArrayAccess

Array access expressions correspond exactly to the ArraySelect nodes in
Scala.js. They both take an array identifier and an integer index as properties.

22

2.3.3 Array Creation

JDT class: org.eclipse.jdt.core.dom.ArrayCreation

Array creation expressions represent arrays created with the new keyword.
There are two ways this can happen. If an array initializer is given, the array
is created via the ArrayValue node in the Scala.js IR (see below). If no array
initializer is given, the array is created with NewArray, which creates a zeroed
array of the appropriate dimension(s).

2.3.4 Array Initializer

JDT class: org.eclipse.jdt.core.dom.ArrayInitializer

Array initializer expressions create arrays by specifying their elements de-
limited with { curly braces }. They map directly to the ArrayValue node in
the Scala.js IR.

2.3.5 Assignments

JDT class: org.eclipse.jdt.core.dom.Assignment

Assignments take the form lhs operator rhs. operator may be any of the
following symbols: =, +=, -=, *=, /=, %=, &=, |=, ^=, <<=, >>=, or >>>=. In the
case of an arithmetic assignment, SJS-JFE treats it as a simple assignment by
constructing the appropriate arithmetic operation node for the right-hand side;
e.g. a += 1 is interpreted as a = a + 1 (see section 2.3.12).

If the left-hand-side of the assignment is a static field, the field’s synthetic
setter is invoked with the right-hand-side as the argument (see section 2.1.4).
Otherwise, SJS-JFE emits the Assign node, which takes the left-hand and right-
hand sides of the assignment as arguments.

There is one additional consideration: in Java, assignments can be used in
the expression position, and evaluate to the assigned value. This makes it possi-
ble to “chain” assignments like int a = b = c = 10. Scala.js does not provide
this feature, so whenever an assignment is used in the expression position, an
extra read is performed on the left-hand-side and its value returned. For ex-
ample, the Java statement a = b = 10; would roughly be translated to the
following IR: Assign(a, Block(Assign(b, 10), VarRef(a))). The general
transformation for an assignment in an expression position is:

[[name = value]] := {

name = value;

name

}

for instance fields and local variables. For static fields, it is:

[[name = value]] := {

Class::name_$eq;X;V(value) // Invoke the setter

Class::name;X() // Invoke the getter

}

where X represents the type of the static field and Class is the field’s declaring
class name.

23

2.3.6 Casts

JDT class: org.eclipse.jdt.core.dom.CastExpression

Cast expressions take the form (Type) expr. They map directly to the
AsInstanceOf node in the Scala.js IR.

2.3.7 Class Instance Creation

JDT class: org.eclipse.jdt.core.dom.ClassInstanceCreation

Class instance creation nodes represent instantiation of classes using the
new keyword. JDT automatically provides a binding to the correct constructor,
including type information for parameters.

Most JDK classes, and all user-defined classes, are instantiated with the New

node in the Scala.js IR. This node behaves like a simplified method invocation,
taking as arguments the name of the class, the signature of the constructor, and
a list of arguments to the constructor.

Boxed types (java.lang.{Boolean, Character, Byte, Short, Integer,

Long, Float, Double}), as well as java.lang.String, are called hijacked
classes in Scala.js, and have special implementations. Instances of these classes
must be created by calling the synthetic static method ::new() with the same
arguments as the constructor. SJS-JFE automatically emits the correct Scala.js
IR node (ApplyStatic or New) based on whether the class is hijacked or not.
Since all hijacked classes are marked as final (thus the set of classes that must
be instantiated with a static call is finite and fixed), this is a static transforma-
tion that can be safely made at compile-time.

If the instantiated class is an inner class, a handle to its outer scope (this)
is provided as a synthetic argument to the constructor.

2.3.8 Conditional (Ternary) Expressions

JDT class: org.eclipse.jdt.core.dom.ConditionalExpression

Ternary expressions take the form cond ? thenExpr : elseExpr. They
map directly to the If node in the Scala.js IR. Recall, the If node takes then
and else expressions and evaluates the appropriate one based on the value of
the condition, making it semantically equivalent to the ternary operator rather
than Java’s if-else.

2.3.9 Creation References

JDT class: org.eclipse.jdt.core.dom.CreationReference

Creation references are method references to a class’s constructor, like
Thing::new. They are not implemented yet in SJS-JFE.

2.3.10 Expression Method References

JDT class: org.eclipse.jdt.core.dom.ExpressionMethodReference

Expression method references are references to methods with an explicit
qualifier, like qualifier::method. They are not implemented yet in SJS-JFE.

24

2.3.11 Field Access

JDT classes: org.eclipse.jdt.core.dom.FieldAccess
org.eclipse.jdt.core.dom.SuperFieldAccess

JDT provides several AST nodes to represent field accesses. The FieldAccess
node is the most flexible.

FieldAccess nodes describe a qualifier and a field name. The qualifier need
not be an identifier — in fact, in cases where the qualifier is not and identifier
(e.g. the this keyword or a method call), such field access can only be expressed
with a FieldAccess node. When the qualifier is an identifier, the FieldAccess

and QualifiedName AST nodes can be used interchangeably11.
At the moment, SJS-JFE maps FieldAccess directly to the Select node in

the Scala.js IR. This does not entirely satisfy the semantics for FieldAccess. In
practice, JDT seems to prefer the QualifiedName AST node for field accesses.
Further testing is required to identify pathologic cases, and the appearance of
these cases may vary depending on the JDT version used.

For example, the expression instance.field is a field access on an object
instance for field field. If instance is defined in an enclosing lexical scope,
this would not map directly to a Select IR node — the qualifier instance would
have to be prepended with one or more field accesses to get the appropriate en-
closing scope. Field accesses using QualifiedName have the correct behaviour.
However, we are unable to find an example of a Java source where JDT prefers
FieldAccess over QualifiedName, so the implementation of FieldAccess is
conservatively left incorrect for now, pending further investigation.

Field accesses on superclasses can only be expressed with the SuperFieldAccess
node. This, too, maps directly to the Select node in the Scala.js AST, except
that the Select is given the class name of the superclass.

2.3.12 Infix Expressions

JDT class: org.eclipse.jdt.core.dom.InfixExpression

Infix expressions are binary expressions using the arithmetic operators +, -,
*, /, %, ^, &, |, <<, >>, >>>, and logical operators ==, !=, >, >=, <, <=, &&, and
||.

JDT allows for more than 2 operands to be specified in an infix expression
(as long as they have the same operator) to limit the depth of the AST. SJS-JFE
treats infix operators as binary functions, so when more than 2 operands are
given, they are folded and the transformation is applied to two operands at a
time.

If the operator is + and the left operand is a string type, SJS-JFE performs
a string concatenation using the BinaryOp node in the Scala.js IR. Otherwise,
it constructs a binary operation using a similar process as the Scala.js compiler.
This algorithm is summarized here:

1. First, the result type of the operation is inferred. If either operand is a
boxed type, the operand is unboxed.

• If either the left or right operand is a double, the result type is
double. If not,

11The JDT javadoc on the FieldAccess class provides a decent explanation of these cases

25

• If either operand is a float, the result type is float. If not,

• If either operand is a long, the result type is long. If not,

• If either operand is an int, char, byte, or short, the result type is
int. If not,

• If either operand is a boolean, the result type is boolean.

• If none of the above cases apply, the result type is Any.

2. The left operand is cast to the output type.

3. The right operand is cast to the output type, unless the operation is a
bitshift, in which case the right operand is cast to int.

4. Depending on the output type, the correct Scala.js binary operator is
chosen (the + operator for integers is different than the one for floats, for
example).

5. A BinaryOp IR node is emitted with the chosen operator and casted
operands.

2.3.13 Instanceof Expressions

JDT class: org.eclipse.jdt.core.dom.InstanceofExpression

instanceof expressions are mapped directly to IsInstanceOf nodes in the
Scala.js IR.

2.3.14 Lambda Expressions

JDT class: jdt.LambdaExpression
Lambda expressions aren’t implemented in SJS-JFE yet due to the non-

trivial handling of captures.

2.3.15 Literals

JDT classes: org.eclipse.jdt.core.dom.BooleanLiteral
org.eclipse.jdt.core.dom.CharacterLiteral

org.eclipse.jdt.core.dom.NullLiteral

org.eclipse.jdt.core.dom.NumberLiteral

org.eclipse.jdt.core.dom.StringLiteral

Transforming literals depends on the type of literal.

• For Boolean, character, and string literals, JDT provides the typed literal
value. These are transformed into BooleanLiteral, CharLiteral, and
StringLiteral nodes in the Scala.js IR, respectively.

• Null literals are transformed to the Null node in the Scala.js IR.

• Number literals encompass double, float, integer, and long literals. Num-
ber literal classes provide only the string token of the literal, which is
not very useful since it must be parsed. However, JDT can resolve the
constant expression value of the literal, which is cast to the appropriate
type and transformed to DoubleLiteral, FloatLiteral, IntLiteral, or
LongLiteral nodes in the Scala.js IR.

26

2.3.16 Method Invocations

JDT classes: org.eclipse.jdt.core.dom.MethodInvocation
org.eclipse.jdt.core.dom.SuperMethodInvocation

JDT resolves method bindings for all method invocations. The binding in-
cludes information about the method’s return type (including erasures), param-
eter types, receiver, etc. The proper transformation can be made on the basis
of binding information:

• If the method is static, it is invoked with ApplyStatic.

• If the method is not static, has no receiver, and is declared in an enclosing
lexical scope, it is invoked with Apply using a reference to the appropriate
enclosing instance as the receiver.

• If the method is not static and has no receiver, it is invoked with Apply

(if the method is public) or ApplyStatically (if private) using this as
the receiver.

• If the method is not static and declares a receiver, it is invoked with Apply

(if public) or ApplyStatically (if private) using the receiver.

• If the method is not static and the receiver is super, it is invoked with
ApplyStatically, since the method may have been overridden. This case
is represented by SuperMethodInvocation in the JDT AST.

The method may be parameterized, in which case the return type of the
method is erased, and must be casted to the expected type. Fortunately, JDT
provides information about the erased type and the invocation type in the
method binding. If the erased type does not match the return type of the
particular invocation, the invocation is wrapped in a cast.

2.3.17 Parenthesized Expressions

JDT class: org.eclipse.jdt.core.dom.ParenthesizedExpression

Parenthesized expressions are simply expressions occurring within (paren-
thesis delimiters). They receive no special treatment and the expression within
the parentheses is transformed normally.

This trivial transformation is [[(expr)]] := [[expr]]

2.3.18 Postfix Expressions

JDT class: org.eclipse.jdt.core.dom.PostfixExpression

Postfix expressions encompass only increment and decrement operations.
They can appear in both statement and expression positions, and SJS-JFE
emits different IR trees for either possibility.

If the expression is used as a statement, SJS-JFE emits a simple assignment
with the appropriate addition/subtraction.

If the expression is used as an expression, SJS-JFE stores the original value
in a temporary variable, does the assignment, then returns the temporary value.
The full transformation (for increment; decrement is similar):

27

[[a++ /* in expression position */]] := {

val temp: T = a;

a = (a +[T] 1);

temp

}

where temp is a fresh name and T is the primitive type of a. Boxed operands
are unboxed if needed.

2.3.19 Prefix Expressions

Prefix expressions encompass increment, decrement, complement (~), Boolean
negation (!), unary minus, and unary plus operations.

Increment and decrement. Increments and decrements can appear in both
statement and expression positions, and SJS-JFE emits different IR trees for
either possibility. If the expression is used as a statement, SJS-JFE emits a
simple assignment with the appropriate addition/subtraction. If the expression
is used in an expression position, SJS-JFE does the assignment, then reads the
left-hand side of the assignment and returns it value.

Complement To quote JLS14 §15.5.5: “In all cases, ~x equals (-x)-1. How-
ever, SJS-JFE uses the equivalent x XOR -1 formula, which simply flips all bits
in the operand.

Boolean negation. Emits a UnaryOp node in the Scala.js IR with the Boolean
! operator.

Unary minus Emits a BinaryOp node in the Scala.js IR that subtracts the
value from the integer value zero.

Unary plus Emits a BinaryOp node in the Scala.js IR that adds the value to
the integer value zero. This seemingly useless arithmetic nevertheless unboxes
the argument and promotes it to integer width.

2.3.20 Qualified and Simple Names

JDT classes: org.eclipse.jdt.core.dom.QualifiedName
org.eclipse.jdt.core.dom.SimpleName

To quote the JDT doc: “A simple name is an identifier other than a keyword,
Boolean literal, or null literal”. A qualified name is a simple name qualified by
either a simple or qualified name. Qualifiers must be names; otherwise, the
FieldAccess AST node must be used.

Qualified names. Let v be the named variable.
If the name is length and the qualifier is an array type, SJS-JFE emits an

ArrayLength IR node.
If v is static, then the qualifier must be a class name. The class must be

top-level or a static inner class (since non-static inner classes cannot have static

28

members), which has a globally-resolvable name. SJS-JFE emits a method
invocation of v’s getter.

If v is not static, then the qualifier must be an instance of an object and v

must be a field. SJS-JFE emits a Select IR node to access the field.

Simple names. Simple names are somewhat more complicated because they
can refer to all local variables, fields, and methods in scope, including scopes of
lexically enclosing instances. Again, let v be the named variable.

If v is a field and is static, SJS-JFE emits a static getter invocation using
the field’s declaring class as a qualifier.

If v is an instance field, SJS-JFE emits a Select, whose qualifier is the
appropriate selector of the instance where v is defined (or this if it is a field on
this).

If v is a local variable or method parameter, SJS-JFE emits a VarRef IR
node.

The field or variable referred to by the name may be parameterized. If the
erasure of the variable doesn’t match the actual type, SJS-JFE wraps the entire
access in a cast to convert to the expected type.

2.3.21 Switch Expressions

JDT class: org.eclipse.jdt.core.dom.SwitchExpression

Switch statements were introduced as a preview feature in JLS 12 and as a
full feature in JLS 14 (JLS14 §15.28). SJS-JFE doesn’t support switch state-
ments in the expression position yet (see section 2.2.13).

2.3.22 this Expressions

JDT class: org.eclipse.jdt.core.dom.ThisExpression

this expressions represent the this keyword as well as the qualified this

referring to an enclosing lexical instance.
If the expression is unqualified, the expression maps directly to the This node

in the Scala.js IR. If the expression is qualified, then a chain of field accesses
is generated to retrieve the appropriate instance. Recall, inner classes have a
synthetic field that refers to the parent lexical instance. Any ancestor scope can
be accessed by traversing these fields.

2.3.23 Type Literals

JDT class: org.eclipse.jdt.core.dom.TypeLiteral

Type literal expressions take the form Type.class. Type may be a class,
primitive, or void. Type literals map directly to the ClassOf node in the
Scala.js IR.

2.3.24 Type Method References

JDT class: org.eclipse.jdt.core.dom.TypeMethodReference

Type method references are references to methods on types, like
String::valueOf. They are not implemented yet in SJS-JFE.

29

2.3.25 Variable Declaration Expressions

JDT class: org.eclipse.jdt.core.dom.VariableDeclarationExpression

Variable declaration expressions are equivalent to variable declaration state-
ments (section 2.2.18), except appearing in an expression position. Most com-
monly, variable declaration expressions are used as initializers in for loops.

2.4 Testing transformations

SJS-JFE is primarily tested using functional tests that focus on a single language
feature at one time. In a functional test, a short but complete Java program
is written that is compiled by SJS-JFE, then linked using the Scala.js compiler
with the Scala.js libraries before being executed in a NodeJS environment. The
tested program prints values to the standard output. A test passes if the output
equals exactly an expected sequence of values.

Individual language features are tested in isolation. A step forward is to write
a suite of integration tests that combine several language features together into
a useful program. A classic example would be to emulate a Turing machine and
trace its execution. Another important milestone in making SJS-JFE ready for
adoption is to select a few well-known Java libraries, compile them to Scala.js
IR, and publish artifacts containing the IR files to a public repository.

SJS-JFE’s tests contain nearly as many lines of code as the main transpiler.
Great care was taken to test as many code paths as possible, which is why many
language features were not implemented in time — it is time-consuming to not
only formulate and write the appropriate transformations, but write tests and
explore different edge cases. Still, many edge cases are probably missing from
tests; Particularly challenging tests were those regarding handling of different
primitive types and implicit value conversions. Testing every language feature
in every possible context is a Herculean task, so a potential improvement would
be to randomly (if not exhaustively) generate many test cases with different
parameters, or at the very least, fuzz the values used in the tests so as to catch
the occasional well-hidden bug.

30

3 Conclusion and Future Directions

SJS-JFE supports enough Java language features to enable writing complex
programs, but there is still no shortage of work to do if SJS-JFE should be widely
adopted. First and foremost, the remaining Java features must be implemented.
Of some concern are local classes, anonymous classes, and lambdas, which must
handle captures. Unfortunately, JDT does not provide a list of captures for
these constructs. Capture handling must also integrate with other features, like
enclosing scope resolution, meaning that this feature will affect SJS-JFE’s code
in several different places.

It is known that there are 2 unsolved problems in computer science: naming
things, cache invalidation, and off-by-one errors. True to this joke, arguably
one of the most difficult tasks is to come up with a more catchy, yet descriptive
name for SJS-JFE, and maybe an attractive logo.

As mentioned in section 2.4, SJS-JFE deserves to be tested more thoroughly,
to demonstrate that all language features are handled correctly in as many
different contexts as possible.

A possible optimization that can be made in the future is resolution of con-
stant expressions. JDT provides quite sophisticated resolution for values, includ-
ing those that are guaranteed never to change through a program’s execution.
These constant expressions can be inlined into the IR for an improvement in
speed and IR size. It is unclear whether JDT’s constant expression resolution
provides better advantages than Scala.js’s own optimizer, but at the very least,
constant expression inlining would make compiling Java ASTs to IR somewhat
faster.

Scala.js programs written in Scala have access to JS APIs, most notably the
JS standard library and the DOM in browsers. These APIs allow programs to
interact with the world around them. Java programs compiled with SJS-JFE
do not have access to these APIs, so to write a useful browser application using
only Java would be impossible.

The greatest hurdle to overcome, however, is developing convenient tooling
around SJS-JFE. At the moment, SJS-JFE is best invoked through the test har-
ness — it does not have a command-line interface. Also, SJS-JFE require several
environment variables to be set, notably the paths to the Scala.js libraries, for
programs to link correctly. These variables are set programmatically and can’t
be modified. SJS-JFE should also include the proper tooling, such as an sbt

plugin, that automatically detects and compiles Java sources into Scala.js IR,
so that using Java in a Scala.js project is as ease as using Java code in a Scala
project on the JVM.

31

References

[1] Sébastien Doeraene. “Cross-Platform Language Design”. PhD thesis. Lau-
sanne, Switzerland: École Polytechnique Fédérale de Lausanne, June 2018.

[2] James Gosling et al. The Java r Language Specification, Java SE 14 Edi-
tion. Tech. rep. Oracle Corporation, Feb. 2020.

32

