Blockchain for Clinical Decision Support Systems

Martin Hanzel Cédric Clément
7221703 6377949
mhanz008Quottawa.ca cclemO54Quottawa. ca

Submitted 23 April 2019

Abstract

Blockchain technology has the potential to equip healthcare providers with the
tools necessary to offer better care for patients. Some of the limitations in
healthcare informatics that blockchain can address are access control [1] and
data integration from several different providers [2]. Our objective is to create a
data store which provides patients and practitioners with the ability to securely
share and revoke access to medical data.

In the first part of this work, we explore the use of blockchain as a data store
with Attribute-Based Encryption (ABE) as an access control mechanism. We
review shortcomings of ABE and existing blockchain solutions with respect to
our use case.

In the second part, we introduce a novel software system, based on blockchain,
which enables users to securely create and share data in an untrusted environ-
ment. Our system allows for cryptographically-backed, granular access control
and revocation, while leaving users in control of their own data. We also discuss
the properties of tree-shaped blockchains, specifically in the context of computer
security.

Contents

1 Introduction
2 Attribute-Based Encryption
2.1 Imtroduction
2.2 Components of ABE
2.2.1 Policy Location,
2.2.2 Architecture o Lo
2.2.3 Revocation
2.3 Shortcomings of ABE in Blockchain Environments
2.3.1 Roles
2.3.2 Revocationo o
3 Existing Systems
3.1 Assumptions of Honesty
3.2 Distributivity Lo
3.3 Incentivization oL
3.4 Data-lessChains
3.5 True Data Ownership
4 Our System
4.1 Master Ledger
4.1.1 Structure of a Record
4.1.2 Initializing the Master Ledger
4.1.3 Creating and Encrypting a Record
4.1.4 Retrievinga Record
4.1.5 Validating a Record
4.1.6 Validating the Master Ledger
4.1.7 Implementation Notes
4.2 Share Tree
421 Sharing
4.2.2 Granularity and Contexts
4.2.3 Revocation
4.2.4 Role-Based and Group-Based Access Control
4.2.5 Time to Live and Denial of Service

12
12
12
13
13
13

4.2.6 Implementation Notes

5 Blocktrees
5.1 Different Security Policy Property
5.1.1 Immediate-Deferred Blocktrees
5.2 Recursive Access Control Property
5.3 User Management and PKI

6 Conclusion and Future Directions

Glossary

33
33
34
34
35

37

39

Chapter 1

Introduction

Blockchain is best known for the potential change it brings to the way finan-
cial transactions occur, leading to its adoption by some banks [3]. However,
blockchain is nothing more than a data structure. The use of blockchain based
data stores are on the rise and access to data is increasingly becoming cen-
tralized. Blockchain technology has the potential to equip healthcare providers
with the tools necessary to offer a better care for mobile patients. For instance,
patients transitioning from a pediatrician to a general practitioner must tend
to the process of coordinating between the two providers. Additionally, the
technology has the potential to connect healthcare providers in a way which is
cryptographically secure, and ensures the confidentiality of patient data.

Our objective is to create a data store which provides patients with the
ability to securely share and revoke access to their data. Take for example a
patient who grants access to an Al system which evaluates the mental state of
a patient. In this scenario, patients could allow the system to access their data
feed. The patient, or external healthcare professionals, could then be provided
with alerts regarding any significant changes to the mental health of this patient.
This would allow a team of healthcare providers to address any potential issues
at the onset of mental illness while giving the data owner full control of their
data.

Additionally, we operate under the following requirements:

e The system must be operational in low connectivity environments. In the
event that the system and its users lose connectivity with the Internet, the
ability to share and revoke access to data must remain intact. The chosen
system must be functional if all connectivity is lost, save that between
data owners, data readers, and the local server storing the data.

e The system must provide users with the ability to share data.
e The system must allow users to revoke instances of shared data.

e The system must support a passive access control layer. That is, access

to data cannot be mediated by a proxy or intermediate server due to the
low connectivity environment.

e The system must protect the data owners against inference attacks such
as in the case where an increase in communication between a patient and
healthcare provider could allow for the inference of health-related issues
of targeted patients.

e The system must be easy to use in the event that a patient does suffer
from a decrease in mental capacities. The cognitive load associated with
key management may be too much for patients to manage in the event of
a mental health crisis.

In this thesis, we develop a blockchain-based, on-chain data store which
enables data owners to share and revoke sets of published information. This
information can be anything from social media posts to personal journal entries.
We do so in a way which is cryptographically secure and leaves patients in control
over access to their data.

We start by introducing Attribute-Based Encryption, an encryption scheme
which allows users to encrypt and decrypt data based on a set of attributes.
We review the different components and considerations when designing an ABE
based crypto-system and why it falls short for our particular use case. Following,
we review some of the existing literature regarding ABE-based cryptosystems
and how they differ from our use case. We conclude with our introduction of
the share tree: a novel blockchain-based data structure which enables users to
securely create and share data in an untrusted environment.

Chapter 2

Attribute-Based Encryption

2.1 Introduction

Control over access to resources is an essential consideration in the design of
systems which harbour sensitive information. Restrictions on which entities
may access a resource is accomplished through the use of access control and au-
thentication mechanisms, such as username and password combinations. These
username and password combinations represent an identity. For example, access
control can be achieved by website administrators by granting a user and their
associated username access to a set of resources and later revoking said rights
if need be.

Attribute-Based Encryption (ABE) is the idea that access to a set of data
can be granted to any user who possesses a set of attributes. For example, in
the context of medical health records, access to a patient’s health chart may be
granted to anyone satisfying the attributes “Emergency Staff” OR (“Doctor”
AND “Immunology”). The important implication to note is that an ABE-
encrypted ciphertext can be encrypted today and decrypted by any users in
the future who possess the required attributes, without any intervention by the
encryptor. Additionally, access to specific sets of data is granted by encrypting
the data over attributes, which can be non-trivial if a user wishes to share data
with multiple users in other PKI crypto-systems. Another advantage of ABE
over other access control mechanisms is that ABE schemes do not necessitate
the use of servers which approve or deny access to data. The primary reason
for this is that the access control mechanisms are created and embedded within
either the private keys or ciphertexts during key-creation or data-encryption
phases. This provides the data owner with the control over who has access to
the data, as opposed to a trusted third party (TTP).

Another reason behind the choice for ABE is that our data storage medium
is assumed to be untrusted. Given that ABE has the potential to provide an
access control mechanism not mediated by an intermediate third party, and with
data stored in an untrusted environment, data owners can publish data without

fear of having their data improperly managed by third parties.

This chapter introduces the various components, types, and design choices to
consider when designing a system with ABE as an access control mechanism. We
review some of ABE’s components as shown in the taxonomical tree presented
by Sookhak et al. [4]. We consider how the many features of ABE can coexist
in a blockchain environment. Finally, we discuss the shortcomings of ABE in
our particular use case.

2.2 Components of ABE

Attribute-based encryption is like a bicycle, in that the choice of components
used to build the system shapes its usage. For instance, one would prefer the
use of thick tires when riding in the snow over thinner ones which are more
efficient over longer distances. The choices available to you when constructing a
bicycle lie, in part, in the choice of the frame’s material or type of brakes. Much
like when building a bicycle, the choice of components must be considered when
building a system centred around the use of ABE. The following section covers
some of the components and how they relate to our use case.

2.2.1 Policy Location

The first component to consider is the choice over where the access policy is
placed. An access policy is created from a universe of attributes and is a boolean
expression such as (“Faculty” OR “Staff”) AND “University of Ottawa.” This
boolean expression can be placed in the ciphertext or in the private key. We
consider the implications of each.

In Key-Policy Attribute-Based Encryption (KP-ABE) the access policy is
encoded in the key. The key is then used to decrypt ciphertext [5]. An example
application provided by [5] for KP-ABE is in the management of audit logs; the
use of a secret key for encrypting logs is inadequate since encrypting under a
single key does not provide the same granularity offered by ABE. Log entries
can be tagged as “critical” and “personal information” and only employees
having keys which allow them to read entries under both “critical” and “personal
information” will be able to decrypt the records. Another use case for KP-ABE
provided by the authors of [5] is with regards to broadcast encryption. In this
use case, broadcast streams can be tagged with attributes. The streams are
encrypted with a symmetric key, and the symmetric key is encrypted with KP-
ABE and sent to subscribers. Only the subscribers who have paid for a given
package can decrypt and obtain the symmetric key in order to decrypt and read
the broadcast stream.

In contrast to KP-ABE, Ciphertext-Policy Attribute-Based Encryption (CP-
ABE) is the idea that the ciphertext is encoded with an access policy. The
ciphertext can then be decrypted by a key which satisfies the policy [6]. In their
paper, Bethencourt et al. stress the fact that in the KP-ABE scheme, the en-
cryptor exerts no control over encrypted data. Instead, a TTP must responsibly

issue keys to users. In contrast to KP-ABE, the decision over who should have
access (based on attributes) is moved from the TTP onto the encryptor.

To summarize, Kamp [7] makes the following distinction between the two:
in KP-ABE, the key “describes a policy” whereas in CP-ABE, the key is used
to “describe a set of attributes.” Conversely, in KP-ABE, the ciphertext is
“associated with a set of attributes” whereas in CP-ABE it is “associated with
a policy.” Kamp further reduces the choice as to which scheme to use based on
who must define the access policy. When the decision regarding who can see the
data is chosen at the time of encryption, CP-ABE is the preferred over KP-ABE
because of the granularity offered by CP-ABE at said time. However, this does
not seem to account for systems where the key creator (attribute authority) and
encryptor are the same user, such as in the case of our system where the data
owner’s (DO’s) control over his or her data is of great importance.

We reiterate that for our use case, DOs must be responsible for the encryp-
tion of ciphertexts as well as the creation and distribution of keys to potential
data readers (DRs). Our DOs cannot rely on third parties for key issuance
since this goes against the idea that our DOs have control over the DRs of
their data. Additionally, the low-connectivity requirement could make third
parties impractical if they are connected from distant locations. With this in
mind, CP-ABE seems like an appropriate choice. However, recall that our ci-
phertext is placed on a blockchain, an immutable data store. An access policy
stored in an immutable data structure cannot be mutated, which leads to issues
when considering revocation. If we consider KP-ABE, ciphertexts are instead
tagged with attributes. Indirection aside, if attributes are fixed and placed in
immutable ciphertexts then KP-ABE is the appropriate choice.

2.2.2 Architecture

Key generation is an important aspect in any crypto-system. In ABE crypto-
systems, key generation is typically carried out by an attribute authority (AA).
An AA is in charge of verifying users and their identities and distributing at-
tributes in accordance with those identities [7]. For our intents and purposes, we
do not want users to have to trust a central AA. Therefore, a decentralized at-
tribute management architecture is the obvious choice. Having made the choice
of decentralized AA over a centralized AA, both are introduced for reasons of
completion.

ABE schemes utilize attributes as access control components. Different com-
binations of attributes lead to different access permissions. The declaration of
these attributes is done so by attribute authorities. Lewko et al. discuss the
issue with ABE with respect to multi-authority systems. Prior to their con-
tribution, the main problem was that multi-AA ABE crypto-systems required
that each AA be dependent upon a central authority in order to provide DOs
and DRs with encryption and decryption capabilities. The ABE systems at
the time were not really decentralized due to their dependence on a central
authority. They present a solution which does not require a central authority

[8].

Choosing a decentralized ABE architecture is preferable over a centralized
given that centralized solutions are weak to corruptible central authorities. In
the event that a DO can no longer trust a central AA, his or her control over
the attribute issuance process is not ensured. The use of a decentralized ABE
crypto-system is suitable for decentralized applications employing blockchain as
a data store.

2.2.3 Revocation

While it is true that the act of communication can never truly be revoked, access
to stored data can be. The importance of revocation cannot be overstated:
revocation provides security for users who may otherwise be hesitant to share
information, or who engage in other forms of self-censorship. In the context of
ABE, modification of attributes leads to revocation of stored data.

This section introduces revocation in ABE systems. We start with a short
introduction of the revocation controller, the entity tasked with initiating the
revocation mechanism. We then review the different revocation mechanisms
and their suitability for blockchain-based clinical decision support systems.

The revocation controller is the entity responsible for initiating the mech-
anism by which revocation occurs. ABE crypto-systems generally place this
responsibility in one of three parties: some authorized authority, a server, or
the data owner [4]. As previously mentioned, revocation via server is a poor
choice for obvious reasons: a rogue server may decide to ignore revocation re-
quests, or even choose to revoke users who were not originally in a revocation
request. Revocation via an authorized authority, other than the original DO, is
also a poor choice for the same reasons as choosing revocation via server. Thus,
for the purposes of a decentralized blockchain-based data store using ABE as a
confidentiality mechanism, the responsibility of revocation controller should lie
with the data owner.

In the context of ABE crypto-systems, revocation can occur via attribute re-
vocation or key revocation [9]. Liu et al. refer to the first revocation mechanism
as the indirect approach wherein the target data is re-encrypted under a new
access policy (or set of attributes in the context of KP-ABE). Following this,
all users who have not had their access revoked receive an updated key. This
method is called indirect revocation because there is no interaction between the
DO and the user with revoked access. The implications of this in our context
are significant: a stored data object (SDO) protected via any ABE scheme and
published on a blockchain cannot effectively be re-encrypted (and by extension,
revoked) due to the innate immutability of blockchain.

The second method is that of the embedded revocation list. The authors
refer to this method as the direct approach since ciphertexts are updated with
a list of revoked users. Any user wishing to decrypt the ciphertext must, in
addition to satisfying the access policy, not be listed in the revocation list. In
the context of blockchain systems where SDOs are encrypted using an ABE-
scheme (without indirection), the direct revocation approach suffers from the
same shortcomings as the indirect approach.

Finally, the third method makes use of a server, used as a first level of
decryption for all decryption requests. The second level of decryption occurs
on the end of the DR. If a DO wishes to revoke the capacity for a given DR to
access their SDO, the request is sent to the server. When the revoked DR wishes
to decrypt the SDO, the server does not execute the first decryption phase thus
providing revocation.

Of the three revocation mechanisms, the server approach is the only method
which we can consider for our use case, albeit it is not perfect. Liu et al. indicate
that, in this naive approach, the multi-step decryption procedure is vulnerable
to collusion attacks. This is because a non-revoked user Eve could assist a
revoked user Bob by having the server execute the first pass decryption on some
SDO. Eve could send the resulting intermediate ciphertext to Bob who would
be able to decrypt it. The author’s contributions [9] make use of revocation
lists, key updates, and expiring keys. The revocation lists are kept short since
they only contain users who have unexpired keys; users with expired keys need
not be added. As for the revocation mechanism, they add a revocation list in
the ciphertext. Additionally, they set a duration for the validity of a ciphertext,
effectively making the ciphertext unreadable without being updated. Given our
use of blockchain as a data store, the use of this method would leave large
portions of the blockchain expired and unreadable by our users.

Having discussed the revocation mechanisms, it is clear that revocation, in
the context of our environment, is hard to achieve with ABE. As discussed in
other sections, indirection is used by many existing systems. However, in most
cases, the indirection is achieved through the use of servers, or other “semi-
trusted” entities. For an environment as constrained as our own, revocation is
hard to achieve without sacrificing on other requirements such as confidentiality
and low-connectivity.

2.3 Shortcomings of ABE in Blockchain Envi-
ronments

Initially, attribute-based encryption seemed like a viable solution. With it, we
could encrypt data on the basis of individual attributes for an object, yielding
fine granularity of access. The cognitive load caused by the management of
multiple attribute keys was a key factor preventing us from using ABE in our
current implementation. A greater aspect of consideration is our choice of data
storage medium: blockchain. The crux of the issue regarding an on-chain,
blockchain-based data store with ABE as a source of confidentiality and access
control is the revocation aspect in conjunction with the immutability offered by
blockchain. Data may not be revoked if the data structure prevents their state
from being changed.

One of the benefits provided by ABE is that of having an Access Control
Structure (ACS) embedded in a ciphertext such as in the case of CP-ABE. This
allows DOs to publish data and manage access to said data during publication.
However, given that we are publishing these permission-encoded payloads to
a blockchain, a data store which ensures immutability and integrity through
hash-chains, the method by which revocation can be achieved is unclear. With
blockchain as a data store, SDOs cannot benefit from both the fine-grained
access control provided by ABE as well as revocation. If the document is pub-
lished with an embedded ACS, the revocation of any part or whole of the ACS
is prevented by the immutability of the blockchain.

2.3.1 Roles

Many of the studied systems had distinct roles for users of their system and do
not consider the possibility of a multi-role environment. That is, in traditional
patient-healthcare provider environments, the ability to read and manage data
is unidirectional; patients produce data that is administered and read by health-
care professionals. In our case, data owners may themselves act as data readers
for other data owners in the system. Issues become apparent in ABE systems
when assumptions on the trustworthiness of roles are at play. The solution pro-
posed by [1] assumes that attribute authorities are semi-trusted actors and that
data owners are completely trusted. Given our multi-role environment, systems
which do not consider multi-role actors fall short and are inadequate for our use
case.

Some authors present servers as actors in their model. In their 2017 paper,
Ma et al. [10] describe the use of expiring attribute-based encryption. Through
the use of semi-trusted re-encryption servers, their system creates keys which
expire after a given amount of time. Although their model makes use of proxy-
re-encryption time servers (which disqualifies their solution given our environ-
mental constraints), they assume some level of trust in the re-encryption server.

10

2.3.2 Revocation

Much of the current research does not take into account the environmental
constraints imposed by our system. External servers are often used as a proxy
in the encryption / decryption phases of their schemes ([11], [12]). Additionally,
others achieved revocation via a discontinuity in key publishing [13]. While the
authors do note that this revocation is partial, our requirements are such that
revocation cannot be predicated on the fact that a data owner ceases to provide
a revokee with data since “backwards” revocation is required. Likewise, some
solutions brought forth the use of revocation lists [9]. Again, our decision to
use blockchain as a data store negated the provided solution’s ability to revoke
access to data since the revocation lists are embedded within the ciphertexts.
Thus, it follows that previously published data cannot be revoked given the
immutability of our data store.

In conclusion, for the reasons outlined above, and in conjunction with our set
of rigid constraints, the use of ABE to protect data stored in blockchain without
the use indirection was forgone. Existing solutions, while novel, do sacrifice
certain aspects, be it usability due to costs accrued via incentivisation schemes,
confidentiality due to assumptions made regarding entity roles, or generally
because of their highly distributed nature.

11

Chapter 3
Existing Systems

A review of existing systems was completed in order to determine what work
had already been done. We now introduce a few of the existing blockchain-based
solutions which make use of an ABE-scheme for confidentiality.

3.1 Assumptions of Honesty

In the MIStore system [14], blockchain is used to store data in nodes (servers)
on the network. Nodes of the system are responsible for storing some subset
of published blocks. In contrast to our low-connectivity requirement, if a user
goes offline, data becomes unavailable. A workaround to this would be to ensure
that all nodes on the network hold a copy of the data. However, doing so would
vastly increase storage costs. Additionally, the authors assume that nodes act
with some level of honesty in order to provide data confidentiality. Their system
also supports the sharing of data belonging to actors (other than the original
DO) with other DRs, a function we would like to avoid given our need for DOs
to be in complete control over their SDOs.

3.2 Distributivity

Wang et al. [15] describe an architecture where pointers to data on an external
filesystem are published to the blockchain. Specifically, pointers reference SDOs
located in an interplanetary file system (IPFS). The use of IPFS requires the
high availability of storage nodes. Due to our low-connectivity requirement,
pointer-based solutions are unsuitable due to their use of remote servers. Addi-
tionally, if a system goes offline, pointers reference SDOs that are unavailable.
They also make the assumption that nodes operate in good faith, which is prob-
lematic in our untrusted environment.

12

3.3 Incentivization

Another interesting design choice taken by certain solutions [15] is the use of
incentives and scarcity, an example being the use of cryptocurrencies such as
Ethereum. The use of Ethereum implies a cost associated with the storage of
data. This is problematic since (1) low-power systems are likely to be the only
ones available in our environment and (2) we do not want to create a system
which limits the publication of blocks. Instead, we want users to publish as
much data as they can in order to feed clinical decision support systems; we
are using blockchain for its cryptographic properties that protect data from
alteration.

Additionally, the authors indicate that smaller ABE ciphertexts are preferred
due to their reduced publication costs. We do not want create a system where
small publications are preferred over larger ones for a few reasons: (1) costs
associated with publishing data are likely to discourage the publication of data;
and (2) publishing costs modify user behaviour and create a potential for bias
in the analysis of data.

3.4 Data-less Chains

The authors of [1] use blockchain as a means to store access policies as op-
posed to data. Access grants and revocations are tracked via transactions on
the blockchain. While their solution does not directly store any data, we men-
tion them since it may be interesting to use their model in a multi-blockchain
environment where requests for access to on-chain SDOs are published to a
parallel blockchain. This provides an immutable audit log of access grants and
revocations, something we discuss in section 4.2.3.

3.5 True Data Ownership

Wang et al. [16] present a distributed system where data producers are hospitals,
and data owners are patients. In contrast, in our system, both the DO and data
producer are the same. We need a system where there is a single source of data,
as opposed to one where multiple stakeholders cooperate in the publishing of
data. There is additionally a reliance on a central authority which generates keys
for users, something we are trying to avoid due to the potential confidentiality
breaches. Furthermore, the data is not stored in the possession of the DO, but
in that of the hospital, raising another issue with confidentiality. Their system
is one which focuses on the collaboration of multiple healthcare providers, all
contributing data for the construction of a patient profile. We are looking for a
solution which is more individualistic in the generation and control of user data.

13

Chapter 4

Our System

The requirements and use case of our application are described earlier in this
work. Unfortunately, we found no prior work in technical literature that per-
fectly matches our requirements. Every existing implementation we considered
possessed glaring issues that rendered it unacceptable for our purposes. There-
fore, we decided to implement our own system from scratch.

Our system provides integrity of data by storing all data in a single blockchain,
called the master ledger. The master ledger is the primary, immutable database
that stores all user data. Additionally, a data structure called a share tree
stores access permissions and allows for the secure sharing of data and flexible
revocation of permissions.

Our system has the following properties not provided by out-of-the-box
blockchain:

e Confidentiality. Authors can choose to encrypt their data before pub-
lishing, so that only they and authorized users may decrypt it.

e Authenticity. Blocks are digitally signed by their authors, so attackers
may not forge data or masquerade as other users.

e Sharing and Access Control. Information about shared data is stored
in a separate data structure, the share tree. The share tree defines read
permissions and enables users to data that was shared with them.

e Revocation. A user may revoke access to previously-shared data by
removing the corresponding entry or entries from the share tree.

e Simple key management. Users should not need to maintain a po-
tentially large keystore. The only essential information that a user must
retain is two keypairs — one for encryption and the other for signing.

e Ease of use. Key generation, retrieval, and distribution are completely
automated and transparent to the end user.

14

e Passivity. All of the above properties are cryptographically guaranteed;
no active access control or authentication layer should be necessary to
safeguard data.

Our system implements the client-server architecture, where one or more
users run client software that communicates directly with a single server. This
approach is convenient for our use case, where we have a small number of users
in an isolated environment. The central server enables there to be a single source
of truth for the state of the system and data stored within.

We suspect that we can employ consensus algorithms used in existing dis-
tributed blockchain systems (like Bitcoin [17]) to scale our system onto a dis-
tributed architecture, but that is beyond the scope of this work.

The server component of our system is a single point of failure, from a se-
curity standpoint. It is plausible that a user could have physical access to the
server, allowing them to install malware or eavesdrop on its network connec-
tions. We therefore operate under the assumption that the server is completely
untrusted. That is, any data stored on the server, any network traffic going to
or from the server, and even any machine instructions being executed on the
server, are insecure.

Remark 1 (The Untrusted Server) At any time, the server must be as-
sumed to be compromised, and the state of the server must be assumed to be
public knowledge.

Although this property seems like a draconian restriction, it does have ben-
efits. If the server is assumed to be compromised at any time, we may as well
make available all of its data, and subject the server to public scrutiny. This
leads to the following observation:

Remark 2 (Public Validation) If the state of the server is made public, any
user may inspect its data for signs of tampering.

In fact, Remark 2 is one of the core tenets of a public blockchain — if data
is public, tampering can be easily detected. A healthy blockchain is frequently
validated by several independent parties.

Remark 1 also carries the important implication that any sensitive informa-
tion must never leave the client’s machine. Thus, all encryption, decryption,
and signing operations must take place on the client-side. We elaborate more
on this observation on page 20.

4.1 Master Ledger

The master ledger is a linear blockchain that serves as the primary data
store for user data. Since the master ledger is a blockchain, it inherits the
cryptographic properties that render data resistant to alteration. In addition,
every block in the ledger is digitally signed by the author before publishing,
providing authenticity and protecting against forgery and impersonation.

15

A block in the master ledger typically corresponds to a record that may
be shared with other users. The interpretation of a ”record” is subjective.
Typically, a record is meant to represent a single file, report, post, or piece of
content that is published or syndicated at once. The following all are good
examples of records:

e A blog post
e A social media post, like a tweet

A media file

An article from a journal
e A form, such as a medical self-assessment

e A document, report, memo, or briefing

In this work, we use the term record to mean a block in the master ledger
that contains user data. In contrast, a block is the general data structure that
makes up a blockchain, and may not necessarily represent a record.

A good guideline is that records should be shareable atomically. That is, it
no part of the record should have different access permissions than another part.
This simplifies the process of sharing a record with other users, but also allows
creating and enforcing security policies that treat records as the fundamental
unit of data. We shall see in Section 5.1 that our system is flexible enough to
handle different security policies at one time, all revolving around the concept
of records. If a user wishes to make parts of a record have different permissions,
they must either split the record into multiple parts, or publish a redacted
version of the record with appropriate permissions.

4.1.1 Structure of a Record

Every record has a set of public attributes, which are key-value pairs that can
be read by anyone. Public attributes may be arbitrarily defined by the author
of a record, but each record has at least the following:

e Hash

Hash of the previous block

Timestamp
e Author ID
e Signature

Public attributes are essential to maintaining the integrity of the master
ledger. Any user may query public attributes and use them to validate the
ledger. The Hash attribute ensures that the contents of the record have not

16

been modified after publishing, and that the server completed the publishing
procedure reliably. The Author ID and Signature attributes ensure authen-
ticity and protect against forgery. The Timestamp and Previous Block
Hash attributes ensure consistent ordering of records within the master ledger.
A record may also include any number of secret attributes, which are
confidential. Before an author publishes a record, they encrypt the set of secret
attributes such that they can easily decrypt them. Two possible encryption
schemes are discussed below. A special secret attribute, the payload, designates
the confidential body of the record. For example, if a user wishes to upload a
file, the bytes of the file would be stored in the record’s payload attribute.

4.1.2 Initializing the Master Ledger

When a master ledger is created, it is initialized with an empty origin block.
The origin block has a null signature, null previous block hash, and a special
public attribute that designates it as the origin block. All other blocks in a
blockchain are descendants of the origin block.

4.1.3 Creating and Encrypting a Record

Publishing data to the master ledger creates a permanent record that is com-
putationally infeasible to alter. Suppose that Alice wants to publish some data
to the master ledger. Creating a record requires two calls to the server:

1. Request to publish: Alice creates a lightweight block containing the
data she wants to publish, encrypting it if necessary. She sends this block
to the server, signaling her intent to create a record.

2. Sign and publish: The server appends necessary attributes to the block
(such as the timestamp and previous block hash), and sends the updated
block back to Alice. Alice signs the updated block and sends back the
signature. The server then appends the complete block and signature to
the master ledger, creating a record.

Both steps are atomic — they must be executed sequentially, by the same
user, to maintain the validity of the master ledger. To see why, suppose that
both Alice and Bob wish to publish a block.

1. Alice completes step 1 and receives block B; from the server. Let By be
the last block in the master ledger. Let H(Bg) be the hash of By. B;
contains H(By) in its previous block hash attribute.

2. Bob completes step 1 and receives block Bs from the server. Since Alice’s
block hasn’t been published yet, the previous block hash in Bs is still
H(By).

3. Alice signs By and completes step 2. The server publishes the block, and
the last block in the master ledger is now Bj.

17

4. Bob signs By and complete step 2. However, the last block in the master
ledger now is By, while Bob’s block, By still contains H(By) as the previous
block hash. Publishing By would leave the system in an inconsistent state,
so the server rejects Bs.

Thus, the process of creating a record is a synchronous process that requires
two calls to the server. Users are blocked from creating records while one user
has not terminated the procedure. This presents an easy surface for denial-of-
service attacks, and so the system must be protected by limiting the frequency
of calls from any particular user.

Proof of Work

In public, distributed blockchains such as Bitcoin [17], there exists a procedure
known as proof of work that prevents users from forging data. For instance,
the Hashcash mechanism (employed by Bitcoin) only accepts blocks whose hash
begins with a certain number of zero bits [18]. A block is updated with a random
nonce attribute until its hash satisfies this condition, at which point the block is
accepted by the system and is added to the blockchain. For an attacker to alter
or forge data, they must recalculate or otherwise derive a hash that satisfies
the proof of work for the chosen block, as well as for every other following
block (since the previous block hash attribute in the following block would
be wrong otherwise). Naturally, brute-forcing a suitable hash using Hashcash
requires a great deal of computing power and time, and so altering a block
quickly becomes computationally infeasible.

In our system, it is important for users to be able to publish data immedi-
ately, which disqualifies the above procedure. Instead, we use digital signatures
in place of proof of work. If a malicious user compromises the server containing
the master ledger, they cannot alter or forge data without being able to generate
their victim’s signature.

A malicious user who compromises the server can replace the signature of
the target record (and every following record) with their own signature. How-
ever, this publicly identifies them as an attacker to other users, and puts the
trustworthiness of their own records in question. Further, if other users retain
their own copy of the master ledger (which is allowed and encouraged), they
can identify any altered signatures. This reveals another vital property of our
system over existing blockchain implementations:

Remark 3 (Attackers are Stakeholders) FEvery user has a mutual stake in
the trustworthiness of the system, discouraging would-be attackers from tamper-
ing with other users’ data.

Proof of work also ensures that the security of records in the master ledger
will increase with time. If an attacker has access to the server and wishes to alter
the final record in the master ledger, they may alter the record’s content on disk
and replace the signature with their own, making the record appear valid. If the
attacker does this before any other user has had the chance to make their own

18

copy of the master record, this action may be undetectable. However, to alter
a record in the "middle” of the ledger, the attacker must replace the signature
on that record and every subsequent record. This behaviour appears highly
suspicious and is nearly guaranteed to be detected by other users, especially if
data are noticed to be missing.

Remark 4 (Security Increases with Time) The security of a record in the
master ledger increases the longer it has been in the ledger. Specifically, for
a given record R, every record published after R increases the chance that a
modification of R will be detectable.

Encrypting and Decrypting Blocks

A record may contain any number of secret attributes, one of which is the
payload (the primary content of the record, such as a document or media file).
Before a record is published, those secret attributes must be encrypted. In this
procedure, all secret attributes and the payload are concatenated into a single
byte string, padded with a random nonce to protect against chosen-ciphertext
attacks, then encrypted using a suitable algorithm. The resultant ciphertext is
then appended to the block as a public attribute.
We explored two schemes of encrypting secret attributes:

e Symmetric, in which the secret attributes are encrypted under a randomly-
generated symmetric key S. S is then encrypted under the author’s public
key, and the result is appended to the block as a public attribute.

e Asymmetric, in which the secret attributes are encrypted under the au-
thor’s public key.

The symmetric scheme performs faster and simplifies the process of sharing
data, as we shall see later. Even though this method introduces at most one
new symmetric key per published record, keys are stored as attributes on the
record and are only retrieved when needed. The user needs only to remember
their encryption and signing keypairs. In fact, we have demonstrated in a simple
reference implementation that key management in the symmetric scheme can
be made completely transparent to the user.

Encrypting a record under the symmetric scheme adds the following public
attributes:

e Symmetric key S encrypted under the author’s public key
e Ciphertext of secret attributes

If a block contains no secret attributes, S will not be generated.

To decrypt a block, the author first decrypts S using their private key, de-
crypts the ciphertext using S, and reconstructs the original set of secret at-
tributes.

It is essential to note that all encryption and decryption operations are
performed by clients. This property makes it possible for our system to operate

19

in spite of Remark 1. Since the server at no point handles plaintexts or private
keys, its operation has little bearing on the confidentiality of user data.

Remark 5 (Client-Side Encryption) All encryption and decryption opera-
tions are the responsibility of clients. The server never handles any plaintext or
private keys, thus, it cannot eavesdrop on confidential data.

4.1.4 Retrieving a Record

A core feature of blockchains, and our system, is that every record should be
retrievable and validatable by any user. A user can look up a record by its
unique hash.

Retrieving a record returns its complete set of public attributes, and the
user may decrypt the record to retrieve its set of secret attributes. Of course,
decryption is only possible if the user possesses the correct key, either from
authoring the block or receiving the key via a share.

4.1.5 Validating a Record

Having retrieved a record, a user may compute its hash. All public attributes,
including ciphertext of secret attributes, are considered when computing the
hash, except the Hash and Signature attributes. Verifying the hash allows a
user to ensure integrity of the block.

It is important that the user’s record-hashing algorithm is the same as the
one employed by the server. In particular, the order in which attributes are
hashed, byte-encoding of strings, endianness of numbers, method of encrypting
secret attributes, etc. must match the server’s record-hashing algorithm.

Given that the author ID is a public attribute, it is possible to look up the
author’s public key and verify the record’s signature against the computed hash.
Verifying the signature allows a user to ensure integrity and authenticity of the
block.

If either the hash or signature do not match the computed hash of a retrieved
block, the data in the block must have been altered, and can no longer be
trusted.

4.1.6 Validating the Master Ledger

A blockchain is essentially a reverse-linked list. Blocks contain pointers to the
previous block in the chain, all the way up to the origin block, whose previous
block hash is null. Since the previous block hash is a public, hashable attribute
on every block, a user can validate the entire master ledger by starting at the
final block and recursively validating from the previous block, as in the following
algorithm:

function validateRecursive(block):
if block = originBlock:
Exit condition

20

return true

assert isValidHash (block)

assert isValidSignature (block)

prevBlock = getBlock (block.previousBlockHash)
assert prevBlock.timestamp < block.timestamp
return validateRecursive (prevBlock)

4.1.7 Implementation Notes

In our reference implementation, the master ledger stores records in a hashmap
keyed by the hash, allowing lookups in 0(1) time. To enable fast lookups on
public attributes, indexes may be implemented on select attributes, similar to a
database management system. For example, an index on the author ID attribute
would be useful for users to quickly retrieve their own records.

4.2 Share Tree

Public attributes of a record in the master ledger are readable by all users,
but secret attributes are, by default, decryptable only by the author. There
must exist some mechanism for sharing secret data with other users. We have
particular requirements for such a mechanism:

e It must be possible to share secret data with any number of users, groups
of users, or no users at all.

e It must be possible to revoke a user’s access to data at any time.

e It must be possible to manage access permissions at either coarse or fine
granularities.

e The process of sharing must not alter data stored within the master ledger.

e Access control must be enforced cryptographically, with no active access
control layer. That is, any security policies or permissions must hold even
if the server is compromised and its safeguards disabled.

To achieve these goals, we extended the concept of a linear blockchain into
a tree-like structure, called a blocktree. In a blocktree, each block contains
the hash of its parent block, except for the root of the tree, which is the origin
block. We use a blocktree to store access permissions separately from the master
record — we call this structure the share tree.

The share tree contains a subtree rooted at the origin block for each user.
Each user’s subtree represents a capability list for that user — access to a record
may be granted to a specific recipient by inserting appropriate information into
the recipient’s subtree. Because the share tree is based on a blockchain, it also

21

Share

Tree Root

Alice Bob Eve

Figure 4.1: A blank share tree, containing nodes for Alice, Bob, and Eve. Each
one of these nodes is the root of that user’s share subtree.

inherits the same properties of the master ledger that keep its contents safe.
Particularly, Remarks 1, 2, 3, and 5 also apply to the share tree.

Blocks in a user’s subtree can represent a permission granted to that user.
We call these permission-containing blocks, ”shares”. Not all blocks need to
be shares. In fact, we will see that using non-share blocks becomes incredibly
useful for organizing permissions, allowing granular management of permissions,
and auditing.

4.2.1 Sharing

Suppose that Alice wants to share a confidential document with Bob, and Al-
ice used the symmetric scheme to encrypt the document. Alice has already
published a record containing the document in the master ledger.

Let:

e R be Alice’s record in the master ledger.
e Hpg be the hash of R.
e Sp be the symmetric key used to encrypt R.

e Hp be the hash of the root block of Bob’s share subtree.

Recall, the encryption of Sg under Alice’s private key is stored in R, so that
only Alice can retrieve Sg.

To share the confidential document, Alice must create a block under Bob’s
share subtree containing Si. She follows a procedure similar to publishing to
the master ledger:

1. Retrieve information: Alice retrieves the record she wishes to share
and decrypts Sg.

2. Request to publish: Alice creates a lightweight block containing Hg as
the parent block hash, and Hr and Si as secret attributes. She encrypts
them using the same procedure as before, but she uses Bob’s public key
instead of her own. She sends the block to the server.

22

3. Sign and publish: The server appends necessary attributes to the block,
and sends the updated block back to Alice. Alice validates the updated
block and generates a signature Sig. She encrypts Sig under Bob’s public
key and sends the ciphertext to the server. The server adds the complete
block and encrypted signature to the share tree.

This process has three important differences from the master ledger publish-
ing procedure.

1. Alice must manually specify the parent block hash. Whereas the master
ledger appends to the end of the chain without exception, a sharer specifies
the parent block hash to indicate the identity of the recipient, or the parent
context of the share (described in the next section).

2. Alice encrypts her signature under Bob’s public key. Encryption is neces-
sary to prevent leaking the sharer’s identity through their signature. This
has the unfortunate tradeoff that the share cannot be validated by any-
one but Bob. However, Alice may choose to not encrypt her signature,
allowing public validation of her share and potentially increasing security,
at the cost of revealing her as the sharer.

3. There is no longer a critical section around steps 2 and 3. Multiple users
may create shares concurrently.

This procedure results in a new share being inserted into Bob’s subtree,
illustrated by Figure 4.2. The new share points to Alice’s shared record in the
master ledger, and contains the symmetric key Sg needed to decrypt the record.
Bob can decrypt the share using his private key, then decrypt Alice’s record in
the master ledger using Sg.

Sharing using the Asymmetric Scheme

The above procedure described how to grant access to a record encrypted using
the symmetric scheme. What if a record were encrypted purely with Alice’s (the
sharer’s) public key? There exists no way, short of Alice revealing her private
key, for other users to decrypt the data. In this instance, Alice must create
a duplicate of the record’s secret attributes, re-encrypt them under Bob’s (the
recipient’s) public key, then publish the ciphertext to the Bob’s subtree. This
effectively grants Bob a read permission to a copy of the original record.

With the decrypted secret attributes in hand, Bob may reconstruct the orig-
inal record using its public attributes, obtained from the master ledger. He may
then encrypt the secret attributes under Alice’s public key and compare the
ciphertext to the original record’s ciphertext to ensure integrity. If they match,
Bob can be confident that the share has not been tampered with.

The asymmetric encryption scheme poses several problems:

e Secret attributes are duplicated every time a record is shared. If a record
is shared with multiple users, the storage costs rise accordingly. This is a

23

Share

Tree Root

Alice Bob Eve

Hash: 6f45...
Recard (enc): ddba...
Key (enc): ...
Signature (enc): ...

Hash:ddba

Master Ledger < Author: Alice

A

Origin

Figure 4.2: The blank share tree from Figure 4.1 after Alice shares a record
with Bob. Note how the share references Alice’s record from the master ledger.
Secret attributes are annotated with (enc). Not all attributes are shown.

Share

Tree Root

Alice Bob Eve
Hash:4fad... Hash: 6145... Hash:1798...
Record (enc): ab0g... Record (enc):ddba... Record (enc): bb5d.
Key (enc): Key (enc): Key (enc):
Signature (enc): ... Signature (enc): Signature (enc): ...

Master Ledger Hash: ab0g Hash: ddba Hash: bb5d
Origin 9 [—— Author: Bob [+—— Author: Bob (—— Author: Eve j€—

Figure 4.3: A more complex share tree, after Bob shared two records with Alice
and Eve shared one record with Bob.

24

significant issue for two reasons. First, if users share large files, like videos
or high-resolution documents, the storage and time cost of sharing may
become prohibitive. Second, in remote or performance-limited environ-
ments (like spacecraft, or embedded systems), the size of the share tree
may eventually exceed the environment’s storage capacity. As the cost of
high-density storage decreases, however, we anticipate that storage costs
will become less of a bottleneck.

e Asymmetric algorithms are slower and require larger key sizes than equiv-
alent symmetric algorithms. Efficient hardware accelerators for crypto-
graphic operations exist, such as as dedicated platforms by Intel [19] and
the Intel AES instruction set for x86 and x64 CPUs [20]. However, since
all cryptographic operations are performed on clients, it may not be rea-
sonable to expect all clients to have sufficient performance, especially in
the case of embedded systems.

e Sharing using the asymmetric scheme is considerably more complex, and
requires additional encryption steps in order to validate shared records.
Much of the additional complexity is on the client side, which may dis-
courage third parties from developing their own client software, hindering
adoption.

The only major benefit of the asymmetric scheme is that it does not gen-
erate an additional symmetric key for every new record. At first glance, the
asymmetric scheme appears to simplify key management. In practice, we found
that managing keys in the symmetric scheme is quite painless and completely
transparent to the end user. That said, since encryption is the responsibil-
ity of clients, it is possible to use either scheme with no change to the server
component, or even use both schemes at the same time.

4.2.2 Granularity and Contexts

We can use the hierarchical nature of the share tree in order to organize permis-
sions. One of our system requirements was that permissions relating to related
records (for example, a user’s blog posts) should be managed together. We
can achieve this by adding blocks into a user’s share tree that do not contain
data, but serve as containers for future shares. We call these blocks, ”context
roots”. The tree rooted at a context root is a context, or a group of logically
related shares.

Suppose that Alice generates daily reports that she wishes to share with
Bob. Alice wants to keep these shares logically grouped. Further, she wishes
to organize these reports by year. Alice would create a context root under
Bob’s share subtree, labelled Reports. She would then create additional context
roots under Reports for every year. Whenever Alice publishes a report, she
would create a share in the appropriate context for that year, granting Bob
read access to the report.

25

Share

Tree Root

Alice Bob Eve
Context:
Reports
Context: Context:
2018 2019
(Zero or more (Zero or mare
shares) shares)

Figure 4.4: A share tree showing a hierarchy of contexts for the daily report
example. Several shares may exist as leaves under a context. Green nodes
represent context roots.

26

If Alice decides not to share a single report, she would simply not create a
share in Bob’s share subtree. Thus, Alice still has control over which records she
wishes to share, regardless of the record’s membership in a particular context.
In fact, Alice can share the same record with another user in an entirely different
context, or share it several times under different contexts. Contexts apply to
the shares, and not the records themselves.

4.2.3 Revocation

Revocation of data access permissions is an essential part of any access control
system. Permissions granted to a user should be revoked if the user leaves
the organization, has their private keys compromised, or becomes malicious
themselves. Further, in a high-security system, users should not retain access
to data they no longer need, and unnecessary permissions should be regularly
revoked (this is the Principle of Least Privilege [21]).

When using an append-only, immutable data store such as a blockchain, it
may seem difficult to revoke access to data once granted. After all, revoking a
permission involves mutating the state of an existing permission, and mutation
of data is expressly forbidden in blockchains. Part of the share tree’s purpose is
to avoid this restriction. By storing permissions in a structure separate from the
immutable master ledger, we can allow mutating the share tree while keeping
the data records themselves safe.

Revocation is handled by removing the appropriate share from the share
tree. For example, if Alice shares a record with Bob by mistake, she can request
that the server remove the offending share. After revocation, Bob will no longer
see that share in his share tree, and so will not be able to decrypt Alice’s record.

This method of removing shares is particularly powerful when combined
with contexts. Continuing the daily report example above, if Alice decides to
revoke Bob’s access to all reports, she can revoke his access to the entire Reports
context. In this way, permissions can be revoked in bulk. Removing a branch
from the share tree does not compromise the structure of the blockchain if and
only if all descendants of a removed node are removed as well.

While the process of revocation alters the share tree, it is impossible to alter
the shares themselves, since each share is protected by a hash and signature.
Any modification to a share can be detected by the recipient of the share, who
can choose not to trust the share.

Revocation by pruning a branch from the share tree is illustrated in Figure
4.5.

Authentication

There must exist some mechanism that prevents users from revoking shares that
they did not create. Otherwise, a malicious insider can revoke any share as soon
as it is created, and deny service to legitimate users. Moreover, this mechanism
must not leak the sharer’s identity to other users

27

Share

Tree Root

Alice Bob Eve

1

Context:
Reports

1

Context:
2018

1

(Zero or mare
shares)

Figure 4.5: A share tree with several contexts, showing how a branch can be
pruned without compromising the structure of the blocktree. The faded 2019
context shall be revoked. It is equally possible to revoke individual shares, or
the top-level Reports context.

28

One suitable mechanism involves using one-time passwords. Whenever Alice
creates a share, she generates a random token T and appends the hash of it,
H(T), to the share as a public attribute. Later, if Alice chooses to revoke the
share, she supplies T', that only she knows. The server processes the revocation
only if the hash of the supplied token matches the H(T') in the share.

This approach requires the generation and storage of a token for every newly
created share. This is an acceptable tradeoff, for two reasons:

1. A user’s client software must somehow keep track of all shares that they
created. Otherwise, they must crawl the entire share tree in order to
retrieve them, which is inefficient. It would be trivial to store a small
token along with this information.

2. If it is not trivial or if it is inconvenient to store this token on the client
side, the token can be encrypted under the sharer’s public key and stored
as a public attribute on the share, similar to how symmetric keys are
stored on records in the master ledger.

Authentication is an active process — the server must deliberately ensure
that revocations are performed by authorized users. Understandably, an at-
tacker who compromises the server may bypass this procedure and arbitrarily
delete shares from disk. However, the share tree contains no data that cannot
be easily recreated by users — lost permissions may be granted again with little
trouble.

Auditing

It may be useful to track when a share was revoked, and by whom. The share
tree supports this style of auditing by replacing a revoked share with a place-
holder block that signifies a revoked permission. Such a block might contain
(some of) the following attributes:

e Date and time that the original permission was granted

e Date and time of revocation

Identity of the revoker
e Hash of the corresponding record(s) in the master ledger

e Reason for revocation

By recording all revocations, an audit log of grant and revoke operations can
be constructed by reading the timestamps on each block. To avoid polluting the
share tree with audit blocks, a separate blockchain may be employed exclusively
for storing audit information.

29

Share

Tree Root

Alice

Bob

1

Context:
Reports

Context:
2018

1

Eve

(Zero or more
shares)

Hash: cada
Grant time: ...
Revoke time: ...
Rewvoker: Alice
Record: <contexts
Reason: ...

Figure 4.6: The share tree from Figure 4.5 after the 2019 context has been
revoked and replaced by a placeholder block containing information about the

revocation.

30

The Revocation Problem

Once any data is shared with other users, there is no guarantee that their access
can be successfully blocked. Nothing prevents a malicious or careless user from
saving the symmetric key, or the corresponding decrypted record, on their local
machine.

This problem can be somewhat mitigated with well-written client software.
Ideally, for every access to a shared record, the client should always query the
share tree for the required share, and not cache the share locally. Otherwise, the
client is saving the symmetric key required to decrypt the shared record on the
recipient’s machine, with no guarantee that it will be safely or timely deleted
once revoked. Well-behaved clients can protect against careless users, but are
powerless against deliberate attackers.

In our view, this is an unsolvable problem that also plagues conventional
access control systems. Once access is granted to a resource, the sharer must
trust the recipient to not handle the resource inappropriately.

One might wonder, if the revocation problem cannot be perfectly solved,
and if compromised data cannot be removed from a blockchain, is revocation
entirely necessary? It absolutely is. In fact, revocation is extremely important
in a circumstance where a legitimate and responsible user (say, Alice), who does
not cache shares or keys, is compromised by an attacker (say, Eve). Even if Eve
steals Alice’s private keys and can masquerade as Alice, Eve will not be able
to access records for which Alice’s access was revoked, precisely because those
permissions were removed from Alice’s share subtree. If the system did not
support revocation, Eve would have full access to any records shared with Alice
in the past.

The previous point illustrates the importance of the Principle of Least Priv-
ilege. If permissions to access a record are no longer needed, they should be
revoked. Revoking a share prevents any future attackers from accessing the data
contained within the share.

4.2.4 Role-Based and Group-Based Access Control

So far, we explored how records can be shared with single users via the share
tree. What if Alice wants to share a record with several users, say, Bob and
Charlie? One option is to create two shares — one for Bob and one for Charlie
— but this is inefficient and requires Alice to revoke two different shares down
the line.

Share trees support the creation of user roles or user groups by creating a
subtree for each role or group. In this case, a subtree for the Bob-Charlie group
would hold shares that are accessible by either Bob or Charlie.

To allow any member of the group to decrypt shares, shares may be en-
crypted in several ways:

e Conventionally, by generating a random symmetric key S and encrypting
S under each member’s respective public key.

31

Share

Tree Root

Alice Bob Eve TechSupport

Figure 4.7: An empty share tree, similar to Figure 4.1, with an extra subtree
root for the TechSupport group. From the perspective of the share tree, this
group is treated as a regular user, and receives no special treatment.

e Using an attribute-based encryption scheme on attributes of users (de-
partment, salary, security clearance, etc.)

e Using a secret-sharing scheme such as ones proposed by Shamir [22], Blak-
ley [23], or Mignotte [24], and distributing key fragments among members
of the group.

A detailed analysis of role- and group-based access control using share trees
was beyond the scope of this work, but it remains a topic that we are eager to
explore in the future.

4.2.5 Time to Live and Denial of Service

One important consideration regarding the sharing of data is the length of time
that a share should stay valid. If shares never expire, this opens up the possi-
bility of denial-of-service attacks by polluting the share tree with bogus shares
that are never cleaned up.

To avoid this situation, the server must periodically check for expired shares,
and remove them from the share tree. Naturally, there must exist a mechanism
for users to renew legitimate shares if needed, requiring active participation by
the sharer.

Imposing a time to live on shares also enforces the Principle of Least Priv-
ilege, as unused shares are automatically revoked and become unavailable to
their recipients after a certain time.

4.2.6 Implementation Notes

We were able to implement a basic share tree in our reference implementation of
the software. We demonstrated that records can be created, shared, retrieved,
and decrypted by the recipient with very little user intervention. Though theo-
retically possible in our implementation, we did not demonstrate context man-
agement or group-based access control. Revocation remains a pending feature.

32

Chapter 5

Blocktrees

While developing the share tree model for data sharing, we discovered that
blocktrees have several properties that make them attractive in computer se-
curity applications. In this chapter, we list some of these properties, possible
applications, and the significance they have on the security of a data storage
system.

5.1 Different Security Policy Property

The first property that we discuss is that different branches on a blocktree
may have different security policies imposed on them. From an organizational
standpoint, this is extremely useful in a multi-user environment where users
may have different roles or belong to different departments in a company. Each
role or department would have its own branch in a blocktree, and may enforce
whichever policies they see fit on their own branch.

The advantage of using a multi-branched blocktree instead of deploying sev-
eral different blockchains is one of transparency and auditing. A blocktree
shared across many departments encourages good data-publishing practices,
and gives every user a stake in the integrity of the system, as per Remark 3.
If every department used a distinct blockchain, users could tamper with other
departments’ blockchains with no consequence to the trustworthiness of their
own data.

Further, a blockchain or blocktree system with many users is inherently safer,
since more users are publishing data. Blocks which have many descendants are
more resistant to tampering, by virtue of Remark 4. However, since an attacker
with access to the server can delete data from disk or overwrite signatures with
their own, appropriate intrusion detection measures must remain in place.

33

5.1.1 Immediate-Deferred Blocktrees

We can exploit the Different Security Policy property to fix an important limita-
tion of the master ledger-share tree model. This limitation relates to a possible
network snooping attack when sharing records. If an eavesdropper, Eve, is lis-
tening to the network while Alice shares a record with someone, Eve will be able
to see traffic going to the server. Since all shares in the share tree are public and
timestamped, Eve can cross-reference shares with the time of the transmission
and determine the recipient and public attributes of the incoming share.

A similar vulnerability exists in the master ledger. The public timestamp of
records, while essential to the ability for a user to validate the blockchain, can
leak information about the record’s contents. If Eve knows Alice’s publishing
habits (for instance, she may know that Alice publishes an encrypted medical
evaluation at 7 PM every day), she can infer the contents of Alice’s records by
the timestamp.

A possible solution would be for the server to defer publishing of records
until a known time in the future, or until a sufficient number of records has
been submitted. However, if the server queues records, it will be unable to
handle urgent records that must be published immediately (because an urgent
record must know the hash of the latest record, which may be queued).

A blocktree can address this problem by having two branches: an imme-
diate branch and a deferred branch. Records published in the immediate
branch are made public right away, at the expense of possible inference attacks.
Records published in the deferred branch are queued on the server and are not
added to the ledger until a known point in the future. A user may choose to
publish in either branch.

Note that, in using two different branches in a blocktree, we can apply two
conflicting security policies (immediate and deferred publishing) in the same
data structure.

5.2 Recursive Access Control Property

In the share tree model, a user, Alice, must explicitly share every record to a set
of users, regardless of the shares’” membership in a context. Using blocktrees,
however, there is a method for Alice’s records to be implicitly shared if they
belong to a shared context.

Let us revisit the daily report example in Section 4.2.2. If Alice makes a
report, she must first publish it to the master ledger, then share the record
with every appropriate user or group. She must also ensure that she shares the
appropriate context.

Suppose that Alice creates a context in Bob’s share subtree containing a
context key for that context. She can then do the following:

e Add a public attribute A to each report record, indicating the record’s
membership in the Reports context.

34

e Encrypt the report such that the context key is sufficient to decrypt it.

Bob can, at any time, query the master ledger for records with attribute
A. Since Bob has access to the context key, he can decrypt those records.
Additionally, since the context key lives in Bob’s share tree, Alice can revoke
Bob’s access at any time.

Here, we have imposed access control to a set of child objects (the records)
based on access to their parent object (the context). This procedure can be
applied recursively to create a filesystem-like hierarchy of objects where a grant
on an object also implies a grant on all descendants.

This recursive access control model can be extended to allow multiple inher-
itance, where an object may have more than one parent. Access control could
be configured such that, in order to have implicit access to an object, a user
must have access to all, one, or a subset of an object’s parents. This model
requires the use of an appropriate multiple encryption or secret sharing scheme,
which is beyond the scope of this work.

5.3 User Management and PKI

A blocktree can be combined with PKI to implement a robust user management
framework based on a chain of trust. Such a framework would have several
attractive features:

e Resistance to tampering, in particular against the creation of fake identi-
ties

Complete transparency to internal users and the public

Auditability

e Soft revocation (revocation of a user’s permissions)

Hard revocation (soft revocation, plus recursive revocation of all permis-
sions granted to others by the user)

A blocktree-based user management system has several components:

e The root of the tree represents a trust anchor, typically the developer or
distributor of the system.

e Leaves of the tree represent end users, who have read-only access to the
blocktree.

e All other nodes represent administrators, who have read-append access to
the blocktree.

35

During the deployment process, the software distributor, acting as a trust
anchor, nominates the system owner as an administrator by creating a block
in the blocktree containing the owner’s public key certificate and capability
list. The distributor signs the block, vouching for its legitimacy. The new
administrator may now apply the same process themselves, creating new end
users and administrators.

Like the chain of trust in PKI, a user’s credentials may be independently
validated by verifying each certificate and signature up to the trust anchor.
Because blocktrees are resistant to alteration, it is possible to store capability
lists within them and remain confident that users may not alter them.

This system is a data structure only — it does not enforce any access control.
Rather, policy enforcement software would use it to authenticate a user and
determine whether they are authorized to perform a certain task, then carry
out enforcement.

Since blocks cannot be altered, revocation must be handled using a revo-
cation list, which may exist either as a known branch in the blocktree, or as a
separate ledger. During the process of authentication, every user up to the trust
anchor is checked against the revocation list. If a match is found, the policy
enforcement point can choose to deny access.

The idea of using blockchain in PKI and internet authentication is not new
[25]-[28]. If blockchain PKI can be combined with the other concepts we ex-
plored in this work, it may yield a powerful, secure, and transparent user man-
agement and data sharing system that goes beyond what PKI offers today.

We formerly envisioned using this kind of framework to implement user
management in our system, but it fell out of scope for this work. We intend to
explore user management via blocktrees in the future.

36

Chapter 6

Conclusion and Future
Directions

In this work, we explored different software approaches of handling sensitive
data using blockchain, particularly in the realm of healthcare. We provided
an overview of attribute-based encryption (ABE), why it appears attractive,
and why it fundamentally fails in a restricted and untrusted environment. We
analyzed several existing blockchain-based data stores, and concluded that all
compromise in at least one essential area. Finding no suitable existing solu-
tion, we devised one from scratch, the master ledger and share tree system,
that appears to fulfill all of our requirements: tolerance to low connectivity,
tolerance to insecure or untrusted environments, ability to share data at coarse
and fine granularity, ability to revoke access permissions, ease of use, and cryp-
tographic guarantee of security. We spent considerable effort discussing the
security properties of this system. Finally, we presented additional properties
and applications of blocktrees as they relate to our system.

We found that many existing solutions do not consider environments where
data stores are held locally or in environments where communication may be
intermittent. Many existing solutions using blockchain technology assume a
higher level of connectivity. The original white paper on Bitcoin [17] describes
a purely peer-to-peer system which allows for an alternative form of online pay-
ments; Much of the research on blockchain is in the context of highly distributed
cryptocurrency systems like Bitcoin. However, more research is required into
the properties of blockchain as a medium for data storage.

We identified specific design considerations for our system and any future
solution:

e Low-connectivity environments: Blockchains may be chosen as the
data-storage medium for their ability to highlight incorrect or altered data.

e Multi-role environments Existing solutions make assumptions regard-
ing the trustworthiness of the actors but do not account for cases where

37

responsibilities (such as data creation, ownership, and consumption) are
undertaken by the same actor actor.

e Resistance against inference. Inferring the contents of a record based
on its metadata opens up an attack surface, even if data is encrypted.

e Untrusted environments. A system must operate securely even if the
network or hardware is insecure or compromised.

e Low cognitive load. A system must be usable for non-technical users
or users suffering from a mental disability.

e Flexible permissioning. Data must be able to be shared with other
users. Access must be managed with coarse or fine granularity, and be
able to be revoked at will.

e Data ownership. Users must be in full control of their own data. Users
should be able to decide with whom they share their data.

In the future, we hope to develop our system into a robust platform for secure
data storage, and make it available to the community as open-source software.
We intend on exploring role- and group-based access control, implementing user
management via blocktrees, and scaling our system into a distributed architec-
ture.

We believe that our system has great potential in the real world, since it
addresses a niche that is not filled by any other solution, to the best of our
knowledge.

38

Glossary

e Access Control Structure (ACS) An access structure is a boolean
expression built from a set of attributes. Also referred to as a policy, or
access policy.

e Attribute Authority (AA) An entity which declares the universe of
attributes with which keys or ciphertext are created.

e Attribute-Based Encryption (ABE) An encryption scheme wherein
attributes dictate a user’s ability to decrypt ciphertext.

e Block In a blockchain, a block is an atomic data structure that stores
data. Many blocks are cryptographically tied together in a linked list to
construct a blockchain.

e Blocktree A blockchain, arranged in a tree-like structure, where every
node (except for the root) is cryptographically linked to its parent node.

e Ciphertext-Policy Attribute-Based Encryption (CP-ABE) An Attribute-
Based Encryption scheme wherein ciphertexts contain an access policy,
and secret keys contain attributes.

e Context In a share tree, a group of shares having to do with related
records.

o Context Root In a share tree, a block that is the root of a subtree which
forms a context.

e Data Owner (DO) An entity which produces a set of data.

e Data Reader (DR) An entity which is granted read rights on a set of
data.

e Interplanetary File System (IPFS) A distributed file system.

¢ Key-Policy Attribute-Based Encryption (KP-ABE) An Attribute-
Based Encryption scheme wherein secret keys contain an access policy,
and ciphertexts contain attributes.

39

Master Ledger In our system, the primary blockchain that permanently
and immutably stores user data.

Origin Block The first block in a blockchain, created when the blockchain
is initialized.

Payload A special secret attribute on a record that contains the main,
confidential body of the record. For example, the bytes of a file would go
in the payload attribute.

Public Attribute A key-value pair on a block or record that is readable
by any user.

Record In the master ledger, a block containing user data and its asso-
ciated metadata. A record typically corresponds to a document, report,
post, media file, or other resource that can be shared with others as a
whole.

Secret Attribute A key-value pair on a block or record that is encrypted
before publishing, and readable only by the author or authorized users.

Share In the share tree, a block representing a granted permission on a
record, and containing information on how to access that record.

Share Tree In our system, a blockchain-like data structure, in the shape
of a tree, that stores access permissions and allows records in the master
ledger to be shared with other users.

Stored Data Object (SDO) A document published to a data store.
In our context, an SDO is encrypted via an ABE scheme, published and
stored on the blockchain.

Trusted Third Party (TTP) An actor entrusted with information or
data belonging to a user.

40

Bibliography

G. Bramm, M. Gall, and J. Schiitte, “Bdabe - blockchain-based distributed
attribute based encryption,” in Proceedings of the 15th International Joint
Conference on e-Business and Telecommunications - Volume 1: SECRYPT,
Jan. 2018, pp. 99-110. por: 10.5220/0006852600990110.

X. Yue, H. Wang, D. Jin, M. Li, and W. Jiang, “Healthcare data gate-
ways: Found healthcare intelligence on blockchain with novel privacy risk
control,” Journal of medical systems, vol. 40, no. 10, p. 218, 2016.

H. Son. (2019). Jp morgan is rolling out the first us bank-backed cryp-
tocurrency to transform payments business, [Online]. Available: https:
//www .cnbc.com/2019/02/13/ jp-morgan-is-rolling-out-the-
first-us-bank-backed-cryptocurrency-to-transform-payments--.
Accessed: 22.04.2019.

M. Sookhak, F. Richard Yu, K. Khan, Y. Xiang, and R. Buyya, “Attribute-
based data access control in cloud computing: Taxonomy and open issues,”
Future Generation Computer Systems, vol. 72, Aug. 2016. DOI: 10.1016/
j.future.2016.08.018.

V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based encryp-
tion for fine-grained access control of encrypted data,” in Proceedings of
the 18th ACM Conference on Computer and Communications Security,
ser. CCS ’06, Alexandria, Virginia, USA: ACM, 2006, pp. 89-98, 1SBN: 1-
59593-518-5. DOL: 10.1145/1180405.1180418. [Online]. Available: http:
//doi.acm.org/10.1145/1180405.1180418.

J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attribute-
based encryption,” in 2007 IEEE Symposium on Security and Privacy
(SP ’07), May 2007, pp. 321-334. DOI: 10.1109/SP.2007.11.

T. Kamp, “Combining abcs with abe: Privacy-friendly key generation for
smart card based attribute-based encryption,” Master’s thesis, University
of Twente, 2014.

A. Lewko and B. Waters, “Decentralizing attribute-based encryption,” in
Annual international conference on the theory and applications of crypto-
graphic techniques, Springer, 2011, pp. 568-588.

41

[10]

[11]

[13]

J. K. Liu, T. H. Yuen, P. Zhang, and K. Liang, “Time-based direct
revocable ciphertext-policy attribute-based encryption with short revo-
cation list,” in Applied Cryptography and Network Security, B. Preneel
and F. Vercauteren, Eds., Cham: Springer International Publishing, 2018,
pp. 516-534, 1SBN: 978-3-319-93387-0.

S. Ma, J. Lai, R. H. Deng, and X. Ding, “Adaptable key-policy attribute-
based encryption with time interval,” Soft Computing, vol. 21, no. 20,
pp. 6191-6200, Oct. 2017, 1SSN: 1433-7479. DOI: 10.1007/s00500-016~
2177-z. [Online]. Available: https://doi.org/10.1007/s00500-016-
2177-z.

I. Youcef, A. Lounis, and A. Bouabdallah, “Revocable attribute-based
access control in multi-authority systems,” Journal of Network and Com-
puter Applications, vol. 122, Aug. 2018. DOI: 10.1016/j . jnca.2018.08.
008.

Y. Zhao, M. Ren, S. Jiang, G. Zhu, and H. Xiong, “An efficient and
revocable storage cp-abe scheme in the cloud computing,” Computing,
Jun. 2018, 1SsN: 1436-5057. DOI: 10.1007/s00607-018-0637-2. [Online].
Available: https://doi.org/10.1007/s00607-018-0637-2.

R. H. Deng and H. Cui, “Revocable and Decentralized Attribute-Based
Encryption,” The Computer Journal, vol. 59, no. 8, pp. 1220-1235, Aug.
2016, 18sN: 0010-4620. pDoOI: 10 . 1093/ comjnl / bxw007. eprint: http :
//oup.prod.sis.lan/comjnl/article-pdf/59/8/1220/8039693/
bxw007 . pdf. [Online]. Available: https://doi.org/10.1093/comjnl/
bxw007.

L. Zhou, L. Wang, and Y. Sun, “Mistore: A blockchain-based medical in-
surance storage system.,” J. Medical Systems, vol. 42, no. 8, 149:1-149:17,
2018. [Online|. Available: http://dblp.uni-trier.de/db/journals/
jms/jms42.html#ZhouWS18.

S. Wang, Y. Zhang, and Y. Zhang, “A blockchain-based framework for
data sharing with fine-grained access control in decentralized storage sys-
tems,” IEEFE Access, vol. 6, pp. 38 437-38 450, 2018, 1SSN: 2169-3536. DOI:
10.1109/ACCESS.2018.2851611.

H. Wang and Y. Song, “Secure cloud-based ehr system using attribute-
based cryptosystem and blockchain,” Journal of medical systems, vol. 42,
no. 8, p. 152, 2018.

S. Nakamoto, Bitcoin: A peer-to-peer electronic cash system, 2009. [On-
line]. Available: http://www.bitcoin.org/bitcoin.pdf.

A. Back, “Hashcash - a denial of service counter-measure,” Tech. Rep.,
2002.

42

[19]

[20]

[27]

[28]

I. Corporation. (2013). Integrated cryptographic and compression accel-
erators on intel architecture platforms, [Online]. Available: https://www.
intel.com/content/dam/www/public/us/en/documents/solution-
briefs / integrated - cryptographic - compression - accelerators -
brief.pdf. Accessed: 20.04.2019.

S. Gueron, Intel® Advanced Encryption Standard (AES) New Instruc-
tions Set. May 2010. [Online]. Available: https: //www . intel . com/
content /dam/doc/white - paper /advanced - encryption- standard-
new-instructions-set-paper.pdf.

W. Stallings and L. Brown, Computer Security: Principles and Prac-
tice, 3rd. Upper Saddle River, NJ, USA: Prentice Hall Press, 2014, 1SBN:
9780133773927.

A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11,
pp. 612-613, Nov. 1979, 1ssN: 0001-0782. DOI: 10.1145/359168.3591786.
[Online]. Available: http://doi.acm.org/10.1145/359168.359176.

G. R. Blakley, “Safeguarding cryptographic keys,” in Managing Require-
ments Knowledge, International Workshop on, Los Alamitos, CA, USA:
IEEE Computer Society, Jun. 1979, p. 313. boI: 10.1109/AFIPS.1979.98.
[Online]. Available: https://doi.ieeecomputersociety.org/10.1109/
AFIPS.1979.98.

M. Mignotte, “How to Share a Secret,” in Cryptography, T. Beth, Ed.,
Berlin, Heidelberg: Springer Berlin Heidelberg, 1983, pp. 371-375, ISBN:
978-3-540-39466-2.

L. M. Axon and M. Goldsmith, “PB-PKI: a privacy-aware blockchain-
based PKI,” vol. 6, SCITEPRESS, 2016.

A. Yakubov, W. M. Shbair, A. Wallbom, D. Sanda, and R. State, “A
blockchain-based pki management framework,” in NOMS 2018 - 2018
IEEE/IFIP Network Operations and Management Symposium, Apr. 2018,
pp. 1-6. DOI: 10.1109/N0OMS.2018.8406325.

M. Al-Bassam, “Scpki: A smart contract-based pki and identity system,”
in Proceedings of the ACM Workshop on Blockchain, Cryptocurrencies and
Contracts, ser. BCC 17, Abu Dhabi, United Arab Emirates: ACM, 2017,
pp. 35-40, ISBN: 978-1-4503-4974-1. DOL: 10 . 1145 /3055518 . 3055530.
[Online]. Available: http://doi.acm.org/10.1145/3055518.3055530.

N. Alexopoulos, J. Daubert, M. Miithlhduser, and S. M. Habib, “Beyond
the hype: On using blockchains in trust management for authentication,”
in 2017 IEEFE Trustcom/BigDataSE/ICESS, Aug. 2017, pp. 546-553. DOT:
10.1109/Trustcom/BigDataSE/ICESS.2017.283.

43

